Cargando…
Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation
The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel in...
Autores principales: | Wang, J., Hao, Z., Wang, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945868/ https://www.ncbi.nlm.nih.gov/pubmed/29780309 http://dx.doi.org/10.3389/fnhum.2018.00166 |
Ejemplares similares
-
A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting-State fMRI Data
por: Wang, Jing, et al.
Publicado: (2016) -
Robust brain parcellation using sparse representation on resting-state fMRI
por: Zhang, Yu, et al.
Publicado: (2014) -
Functional parcellation of the hippocampus by semi-supervised clustering of resting state fMRI data
por: Cheng, Hewei, et al.
Publicado: (2020) -
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014) -
A sub+cortical fMRI‐based surface parcellation
por: Lewis, John D., et al.
Publicado: (2021)