Cargando…
Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns
Repeated failures in clinical trials for Alzheimer’s disease (AD) have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945895/ https://www.ncbi.nlm.nih.gov/pubmed/29780348 http://dx.doi.org/10.3389/fneur.2018.00235 |
_version_ | 1783322082403155968 |
---|---|
author | Koval, Igor Schiratti, Jean-Baptiste Routier, Alexandre Bacci, Michael Colliot, Olivier Allassonnière, Stéphanie Durrleman, Stanley |
author_facet | Koval, Igor Schiratti, Jean-Baptiste Routier, Alexandre Bacci, Michael Colliot, Olivier Allassonnière, Stéphanie Durrleman, Stanley |
author_sort | Koval, Igor |
collection | PubMed |
description | Repeated failures in clinical trials for Alzheimer’s disease (AD) have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized patterns of the neurodegenerative spread, providing a way to estimate disease progression stages and predict the age at which the disease will be diagnosed. The model shows that, for instance, APOE carriers have a significantly higher pace of cortical atrophy but not earlier atrophy onset. |
format | Online Article Text |
id | pubmed-5945895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59458952018-05-18 Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns Koval, Igor Schiratti, Jean-Baptiste Routier, Alexandre Bacci, Michael Colliot, Olivier Allassonnière, Stéphanie Durrleman, Stanley Front Neurol Neuroscience Repeated failures in clinical trials for Alzheimer’s disease (AD) have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized patterns of the neurodegenerative spread, providing a way to estimate disease progression stages and predict the age at which the disease will be diagnosed. The model shows that, for instance, APOE carriers have a significantly higher pace of cortical atrophy but not earlier atrophy onset. Frontiers Media S.A. 2018-05-04 /pmc/articles/PMC5945895/ /pubmed/29780348 http://dx.doi.org/10.3389/fneur.2018.00235 Text en Copyright © 2018 Koval, Schiratti, Routier, Bacci, Colliot, Allassonnière and Durrleman. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Koval, Igor Schiratti, Jean-Baptiste Routier, Alexandre Bacci, Michael Colliot, Olivier Allassonnière, Stéphanie Durrleman, Stanley Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns |
title | Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns |
title_full | Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns |
title_fullStr | Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns |
title_full_unstemmed | Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns |
title_short | Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns |
title_sort | spatiotemporal propagation of the cortical atrophy: population and individual patterns |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945895/ https://www.ncbi.nlm.nih.gov/pubmed/29780348 http://dx.doi.org/10.3389/fneur.2018.00235 |
work_keys_str_mv | AT kovaligor spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns AT schirattijeanbaptiste spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns AT routieralexandre spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns AT baccimichael spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns AT colliotolivier spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns AT allassonnierestephanie spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns AT durrlemanstanley spatiotemporalpropagationofthecorticalatrophypopulationandindividualpatterns |