Cargando…

Effects of dietary yeast nucleotides on growth, non-specific immunity, intestine growth and intestinal microbiota of juvenile hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂

This study investigated the effect of dietary supplementation of yeast nucleotides on the growth, non-specific immunity, intestine growth and intestinal microbiota of juvenile hybrid tilapia. Tilapia (initial average weight of 8.02 g) was fed test diets supplemented with a yeast-originated nucleotid...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Li, Ran, Chao, He, Suxu, Zhang, Jianli, Hu, Jun, Yang, Yalin, Du, Zhenyu, Yang, Yanou, Zhou, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945949/
https://www.ncbi.nlm.nih.gov/pubmed/29767139
http://dx.doi.org/10.1016/j.aninu.2015.08.006
Descripción
Sumario:This study investigated the effect of dietary supplementation of yeast nucleotides on the growth, non-specific immunity, intestine growth and intestinal microbiota of juvenile hybrid tilapia. Tilapia (initial average weight of 8.02 g) was fed test diets supplemented with a yeast-originated nucleotide mixture (0, 0.15, 0.30, 0.60, and 1.20 g/100 g diet) for 8 weeks. Fish fed the diet with 0.60% nucleotide had significantly higher weight gain than the control group (P < 0.05). Feed efficiency was improved in the fish fed 0.60 and 1.20% nucleotide compared with that in the control group. The optimal doses of nucleotides supplementation for growth and feed efficiency of fish were determined as 0.63 and 0.81%, respectively. Intestinal growth was improved in the 0.30 and 0.60% groups, as indicated by significant increase in intestine length. The fish fed 0.60 and 1.20% nucleotide showed higher super oxide dismutase (SOD) activity and lower malondialdehyde (MDA) level in the liver than the control fish, indicating enhancement of the anti-oxidant status. Serum lysozyme activity was significantly increased in the 0.15 and 0.3% nucleotide supplementation groups, suggesting an enhancement effect on the non-specific immune response. Lastly, dietary nucleotides supplementation exerted moderate influence on the intestinal microbiota of hybrid tilapia. A reduction in the cumulative abundance of putative butyrate-producing species was observed in the intestinal microbiota of fish fed diets with 0.60% nucleotide compared with the control, implying an interaction between dietary nucleotides and butyrate production. Briefly, dietary supplementation with 0.60% nucleotide improve the growth performance, immune activity and intestine growth in tilapia.