Cargando…

Pepsin Egg White Hydrolysate Improves Glucose Metabolism Complications Related to Metabolic Syndrome in Zucker Fatty Rats

The purpose of this study was to evaluate the effect of the administration of two egg white hydrolysates on glucose metabolism complications related to Metabolic Syndrome (MS) in Zucker fatty rats (ZFR). ZFR were given 750 mg/kg/day of egg white hydrolyzed with pepsin (HEW1) or with aminopeptidase (...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcés-Rimón, Marta, González, Cristina, Vera, Gema, Uranga, José-A., López-Fandiño, Rosina, López-Miranda, Visitación, Miguel, Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946226/
https://www.ncbi.nlm.nih.gov/pubmed/29614007
http://dx.doi.org/10.3390/nu10040441
Descripción
Sumario:The purpose of this study was to evaluate the effect of the administration of two egg white hydrolysates on glucose metabolism complications related to Metabolic Syndrome (MS) in Zucker fatty rats (ZFR). ZFR were given 750 mg/kg/day of egg white hydrolyzed with pepsin (HEW1) or with aminopeptidase (HEW2) for 12 weeks in their drinking water or just water. Zucker lean rats (ZLR), which received water, were used as a control. The presence of tactile allodynia, which is a sign of peripheral neuropathy, was assessed. Blood samples and pancreas were collected to determine the effect of the hydrolysates on glucose metabolism. The intake of HEW1 significantly lowered plasma insulin levels and improved the quantitative indexes of insulin resistance, insulin sensitivity, and pancreatic β-cell functionality (HOMA-IR, HOMA-β, and QUICKI, respectively), but non-significant changes were observed in group treated with HEW2. Compared to ZLR, ZFR showed tactile allodynia, but the consumption of both hydrolysates significantly increased mechanical sensitivity in ZFR. In conclusion, HEW1 pepsin could improve the glucose metabolism abnormalities associated with MS in obese Zucker rats.