Cargando…
Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice
BACKGROUND: Cell-type-specific genes exhibit heterogeneity in genomic contexts and may be subject to different epigenetic regulations through different gene transcriptional processes depending on the cell type involved. The gene-body regions (GBRs) of some cardiomyocyte (CM)-specific genes are long...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946493/ https://www.ncbi.nlm.nih.gov/pubmed/29747586 http://dx.doi.org/10.1186/s12864-018-4752-4 |
_version_ | 1783322210697478144 |
---|---|
author | Oda, Mayumi Wakabayashi, Shunichi Ari Wijetunga, N. Yuasa, Shinsuke Enomoto, Hirokazu Kaneda, Ruri Yoon, Sung Han Mittal, Nishant Jing, Qiang Suzuki, Masako Greally, John M. Fukuda, Keiichi Makino, Shinji |
author_facet | Oda, Mayumi Wakabayashi, Shunichi Ari Wijetunga, N. Yuasa, Shinsuke Enomoto, Hirokazu Kaneda, Ruri Yoon, Sung Han Mittal, Nishant Jing, Qiang Suzuki, Masako Greally, John M. Fukuda, Keiichi Makino, Shinji |
author_sort | Oda, Mayumi |
collection | PubMed |
description | BACKGROUND: Cell-type-specific genes exhibit heterogeneity in genomic contexts and may be subject to different epigenetic regulations through different gene transcriptional processes depending on the cell type involved. The gene-body regions (GBRs) of some cardiomyocyte (CM)-specific genes are long and highly hypomethylated in CMs. To explore the cell-type specificities of epigenetic patterns and functions, multiple epigenetic modifications of GBRs were compared among CMs, liver cells and embryonic stem cells (ESCs). RESULTS: We found that most genes show a moderately negative correlation between transcript levels and gene lengths. As CM-specific genes are generally longer than other cell-type-specific genes, we hypothesized that the gene-body epigenetic features of CMs may support the transcriptional regulation of CM-specific genes. We found gene-body DNA hypomethylation in a CM-specific gene subset co-localized with rare gene-body marks, including RNA polymerase II (Pol II) and p300. Interestingly, 5-hydroxymethylcytosine (5hmC) within the gene body marked cell-type-specific genes at neonatal stages and active gene-body histone mark H3K36 trimethylation declined and overlapped with cell-type-specific gene-body DNA hypomethylation and selective Pol II/p300 accumulation in adulthood. Different combinations of gene-body epigenetic modifications were also observed with genome-wide scale cell-type specificity, revealing the occurrence of dynamic epigenetic rearrangements in GBRs across different cell types. CONCLUSIONS: As 5hmC enrichment proceeded to hypomethylated GBRs, we considered that hypomethylation may not represent a static state but rather an equilibrium state of turnover due to the balance between local methylation linked to transcription and Tet oxidative modification causing demethylation. Accordingly, we conclude that demethylation in CMs can be a used to establish such cell-type-specific epigenetic domains in relation to liver cells. The establishment of cell-type-specific epigenetic control may also change genomic contexts of evolution and may contribute to the development of cell-type-specific transcriptional coordination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-4752-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5946493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59464932018-05-17 Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice Oda, Mayumi Wakabayashi, Shunichi Ari Wijetunga, N. Yuasa, Shinsuke Enomoto, Hirokazu Kaneda, Ruri Yoon, Sung Han Mittal, Nishant Jing, Qiang Suzuki, Masako Greally, John M. Fukuda, Keiichi Makino, Shinji BMC Genomics Research Article BACKGROUND: Cell-type-specific genes exhibit heterogeneity in genomic contexts and may be subject to different epigenetic regulations through different gene transcriptional processes depending on the cell type involved. The gene-body regions (GBRs) of some cardiomyocyte (CM)-specific genes are long and highly hypomethylated in CMs. To explore the cell-type specificities of epigenetic patterns and functions, multiple epigenetic modifications of GBRs were compared among CMs, liver cells and embryonic stem cells (ESCs). RESULTS: We found that most genes show a moderately negative correlation between transcript levels and gene lengths. As CM-specific genes are generally longer than other cell-type-specific genes, we hypothesized that the gene-body epigenetic features of CMs may support the transcriptional regulation of CM-specific genes. We found gene-body DNA hypomethylation in a CM-specific gene subset co-localized with rare gene-body marks, including RNA polymerase II (Pol II) and p300. Interestingly, 5-hydroxymethylcytosine (5hmC) within the gene body marked cell-type-specific genes at neonatal stages and active gene-body histone mark H3K36 trimethylation declined and overlapped with cell-type-specific gene-body DNA hypomethylation and selective Pol II/p300 accumulation in adulthood. Different combinations of gene-body epigenetic modifications were also observed with genome-wide scale cell-type specificity, revealing the occurrence of dynamic epigenetic rearrangements in GBRs across different cell types. CONCLUSIONS: As 5hmC enrichment proceeded to hypomethylated GBRs, we considered that hypomethylation may not represent a static state but rather an equilibrium state of turnover due to the balance between local methylation linked to transcription and Tet oxidative modification causing demethylation. Accordingly, we conclude that demethylation in CMs can be a used to establish such cell-type-specific epigenetic domains in relation to liver cells. The establishment of cell-type-specific epigenetic control may also change genomic contexts of evolution and may contribute to the development of cell-type-specific transcriptional coordination. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-4752-4) contains supplementary material, which is available to authorized users. BioMed Central 2018-05-10 /pmc/articles/PMC5946493/ /pubmed/29747586 http://dx.doi.org/10.1186/s12864-018-4752-4 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Oda, Mayumi Wakabayashi, Shunichi Ari Wijetunga, N. Yuasa, Shinsuke Enomoto, Hirokazu Kaneda, Ruri Yoon, Sung Han Mittal, Nishant Jing, Qiang Suzuki, Masako Greally, John M. Fukuda, Keiichi Makino, Shinji Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
title | Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
title_full | Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
title_fullStr | Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
title_full_unstemmed | Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
title_short | Selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
title_sort | selective modulation of local linkages between active transcription and oxidative demethylation activity shapes cardiomyocyte-specific gene-body epigenetic status in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946493/ https://www.ncbi.nlm.nih.gov/pubmed/29747586 http://dx.doi.org/10.1186/s12864-018-4752-4 |
work_keys_str_mv | AT odamayumi selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT wakabayashishunichi selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT ariwijetungan selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT yuasashinsuke selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT enomotohirokazu selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT kanedaruri selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT yoonsunghan selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT mittalnishant selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT jingqiang selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT suzukimasako selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT greallyjohnm selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT fukudakeiichi selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice AT makinoshinji selectivemodulationoflocallinkagesbetweenactivetranscriptionandoxidativedemethylationactivityshapescardiomyocytespecificgenebodyepigeneticstatusinmice |