Cargando…
Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression
BACKGROUND: Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients’ response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models...
Autores principales: | Zhang, Xinyan, Li, Bingzong, Han, Huiying, Song, Sha, Xu, Hongxia, Hong, Yating, Yi, Nengjun, Zhuang, Wenzhuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946496/ https://www.ncbi.nlm.nih.gov/pubmed/29747599 http://dx.doi.org/10.1186/s12885-018-4483-6 |
Ejemplares similares
-
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
por: Montesinos-López, Osval A., et al.
Publicado: (2015) -
Ordinal Logistic Regression in Medical Research
por: Bender, Ralf, et al.
Publicado: (1997) -
Validation of in silico biomarkers for drug screening through ordinal logistic regression
por: Jeong, Da Un, et al.
Publicado: (2022) -
Multinomial and ordinal Logistic regression analyses with multi-categorical variables using R
por: Liang, Jiaqi, et al.
Publicado: (2020) -
Using the hierarchical ordinal regression model to analyse the intensity of urinary schistosomiasis infection in school children in Lusaka Province, Zambia
por: Simoonga, Christopher, et al.
Publicado: (2017)