Cargando…
White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina
A white light polarization sensitive optical coherence tomography system has been developed, using a supercontinuum laser as the light source. By detecting backscattered light from 400 – 700 nm, an axial resolution of 1.0 µm in air was achieved. The system consists of a free-space interferometer and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946775/ https://www.ncbi.nlm.nih.gov/pubmed/29760974 http://dx.doi.org/10.1364/BOE.9.002115 |
Sumario: | A white light polarization sensitive optical coherence tomography system has been developed, using a supercontinuum laser as the light source. By detecting backscattered light from 400 – 700 nm, an axial resolution of 1.0 µm in air was achieved. The system consists of a free-space interferometer and two homemade spectrometers that detect orthogonal polarization states. Following system specifications, images of a healthy murine retina as acquired by this non-contact system are presented, showing high resolution reflectivity images as well as spectroscopic and polarization sensitive contrast. Additional images of the very-low-density-lipoprotein-receptor (VLDLR) knockout mouse model were acquired. The high resolution allows the detection of small lesions in the retina. |
---|