Cargando…
Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data
MOTIVATION: Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms...
Autores principales: | Yang, Yang, Niehaus, Katherine E, Walker, Timothy M, Iqbal, Zamin, Walker, A Sarah, Wilson, Daniel J, Peto, Tim E A, Crook, Derrick W, Smith, E Grace, Zhu, Tingting, Clifton, David A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946815/ https://www.ncbi.nlm.nih.gov/pubmed/29240876 http://dx.doi.org/10.1093/bioinformatics/btx801 |
Ejemplares similares
-
Application of machine learning techniques to tuberculosis drug resistance analysis
por: Kouchaki, Samaneh, et al.
Publicado: (2019) -
DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis
por: Yang, Yang, et al.
Publicado: (2019) -
Multi-Label Random Forest Model for Tuberculosis Drug Resistance Classification and Mutation Ranking
por: Kouchaki, Samaneh, et al.
Publicado: (2020) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
por: Yang, Yang, et al.
Publicado: (2021) -
Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study
por: Walker, Timothy M, et al.
Publicado: (2015)