Cargando…
DeepSig: deep learning improves signal peptide detection in proteins
MOTIVATION: The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. RESULTS: Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Com...
Autores principales: | Savojardo, Castrense, Martelli, Pier Luigi, Fariselli, Piero, Casadio, Rita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946842/ https://www.ncbi.nlm.nih.gov/pubmed/29280997 http://dx.doi.org/10.1093/bioinformatics/btx818 |
Ejemplares similares
-
Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations
por: Savojardo, Castrense, et al.
Publicado: (2013) -
Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
por: Fariselli, Piero, et al.
Publicado: (2009) -
SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments
por: Savojardo, Castrense, et al.
Publicado: (2017) -
BUSCA: an integrative web server to predict subcellular localization of proteins
por: Savojardo, Castrense, et al.
Publicado: (2018) -
CoCoNat: a novel method based on deep learning for coiled-coil prediction
por: Madeo, Giovanni, et al.
Publicado: (2023)