Cargando…
Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture
Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947113/ https://www.ncbi.nlm.nih.gov/pubmed/29205819 http://dx.doi.org/10.1111/jipb.12617 |
_version_ | 1783322305973190656 |
---|---|
author | Lee, Sangseok I. Sergeeva, Lidiya Vreugdenhil, Dick |
author_facet | Lee, Sangseok I. Sergeeva, Lidiya Vreugdenhil, Dick |
author_sort | Lee, Sangseok |
collection | PubMed |
description | Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of thirteen Arabidopsis thaliana accessions using a ultra performance liquid chromatography triple quadrupole mass spectrometer. Root system architecture of the set of accessions was quantified, using a new parameter (mature root unit) for complex root systems, and correlated with the phytohormone data. Significant variations in phytohormone levels among the accessions were detected, but were remarkably small, namely less than three‐fold difference between extremes. For cytokinins, relatively larger variations were found for ribosides and glucosides, as compared to the free bases. For root phenotyping, length‐related traits—lateral root length and total root length—showed larger variations than lateral root number‐related ones. For root architecture, antagonistic interactions between hormones, for example, indole‐3‐acetic acid to trans‐zeatin were detected in correlation analysis. These findings provide conclusive evidence for the presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative genetic analyses are feasible. |
format | Online Article Text |
id | pubmed-5947113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59471132018-05-17 Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture Lee, Sangseok I. Sergeeva, Lidiya Vreugdenhil, Dick J Integr Plant Biol High‐Impact Articles Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of thirteen Arabidopsis thaliana accessions using a ultra performance liquid chromatography triple quadrupole mass spectrometer. Root system architecture of the set of accessions was quantified, using a new parameter (mature root unit) for complex root systems, and correlated with the phytohormone data. Significant variations in phytohormone levels among the accessions were detected, but were remarkably small, namely less than three‐fold difference between extremes. For cytokinins, relatively larger variations were found for ribosides and glucosides, as compared to the free bases. For root phenotyping, length‐related traits—lateral root length and total root length—showed larger variations than lateral root number‐related ones. For root architecture, antagonistic interactions between hormones, for example, indole‐3‐acetic acid to trans‐zeatin were detected in correlation analysis. These findings provide conclusive evidence for the presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative genetic analyses are feasible. John Wiley and Sons Inc. 2018-02-06 2018-04 /pmc/articles/PMC5947113/ /pubmed/29205819 http://dx.doi.org/10.1111/jipb.12617 Text en © 2017 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | High‐Impact Articles Lee, Sangseok I. Sergeeva, Lidiya Vreugdenhil, Dick Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture |
title | Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture |
title_full | Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture |
title_fullStr | Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture |
title_full_unstemmed | Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture |
title_short | Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture |
title_sort | natural variation of hormone levels in arabidopsis roots and correlations with complex root architecture |
topic | High‐Impact Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947113/ https://www.ncbi.nlm.nih.gov/pubmed/29205819 http://dx.doi.org/10.1111/jipb.12617 |
work_keys_str_mv | AT leesangseok naturalvariationofhormonelevelsinarabidopsisrootsandcorrelationswithcomplexrootarchitecture AT isergeevalidiya naturalvariationofhormonelevelsinarabidopsisrootsandcorrelationswithcomplexrootarchitecture AT vreugdenhildick naturalvariationofhormonelevelsinarabidopsisrootsandcorrelationswithcomplexrootarchitecture |