Cargando…

Cyclometalated iridium(iii) complexes as lysosome-targeted photodynamic anticancer and real-time tracking agents

Stimuli-activatable photosensitizers (PSs) are highly desirable for photodynamic therapy (PDT) to selectively demolish tumor cells. On the other hand, lysosomes are emerging as attractive anticancer targets. Herein, four cyclometalated iridium(iii)–β-carboline complexes with pH-responsive singlet ox...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Liang, Li, Yi, Tan, Cai-Ping, Ye, Rui-Rong, Chen, Mu-He, Cao, Jian-Jun, Ji, Liang-Nian, Mao, Zong-Wan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947539/
https://www.ncbi.nlm.nih.gov/pubmed/29861886
http://dx.doi.org/10.1039/c5sc01955a
Descripción
Sumario:Stimuli-activatable photosensitizers (PSs) are highly desirable for photodynamic therapy (PDT) to selectively demolish tumor cells. On the other hand, lysosomes are emerging as attractive anticancer targets. Herein, four cyclometalated iridium(iii)–β-carboline complexes with pH-responsive singlet oxygen ((1)O(2)) production and lysosome-specific imaging properties have been designed and synthesized. Upon visible light (425 nm) irradiation, they show highly selective phototoxicities against cancer cells. Notably, complex 2 ([Ir(N^C)(2)(N^N)](PF(6)) in which N^C = 2-phenylpyridine and N^N = 1-(2-benzimidazolyl)-β-carboline) displays a remarkably high phototoxicity index (PI = IC(50) in the dark/IC(50) in light) of >833 against human lung carcinoma A549 cells. Further studies show that 2-mediated PDT induces caspase-dependent apoptosis through lysosomal damage. The pH-responsive phosphorescence of complex 2 can be utilized to monitor the lysosomal integrity upon PDT, which provides a reliable and convenient method for in situ monitoring of therapeutic effect and real-time assessment of treatment outcome. Our work provides a strategy for the construction of highly effective multifunctional subcellular targeted photodynamic anticancer agents through rational structural modification of phosphorescent metal complexes.