Cargando…
Anthracene Bisureas as Powerful and Accessible Anion Carriers
Synthetic anion carriers (anionophores) have potential as biomedical research tools and as treatments for conditions arising from defective natural transport systems (notably cystic fibrosis). Highly active anionophores that are readily accessible and easily deliverable are especially valuable. Prev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947650/ https://www.ncbi.nlm.nih.gov/pubmed/29493830 http://dx.doi.org/10.1002/chem.201800508 |
Sumario: | Synthetic anion carriers (anionophores) have potential as biomedical research tools and as treatments for conditions arising from defective natural transport systems (notably cystic fibrosis). Highly active anionophores that are readily accessible and easily deliverable are especially valuable. Previous work has resulted in steroid and trans‐decalin based anionophores with exceptional activity for chloride/nitrate exchange in vesicles, but poor accessibility and deliverability. This work shows that anthracene 1,8‐bisureas can fulfil all three criteria. In particular, a bis‐nitrophenyl derivative is prepared in two steps from commercial starting materials, yet shows comparable transport activity to the best currently known. Moreover, unlike earlier highly active systems, it does not need to be preincorporated in test vesicles but can be introduced subsequent to vesicle formation. This transporter also shows the ability to transfer between vesicles, and is therefore uniquely effective for anion transport at low transporter loadings. The results suggest that anthracene bisureas are promising candidates for application in biological research and medicine. |
---|