Cargando…
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3‐D structure. C...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947730/ https://www.ncbi.nlm.nih.gov/pubmed/29780287 http://dx.doi.org/10.1002/2017SW001735 |
_version_ | 1783322428944941056 |
---|---|
author | Möstl, C. Amerstorfer, T. Palmerio, E. Isavnin, A. Farrugia, C. J. Lowder, C. Winslow, R. M. Donnerer, J. M. Kilpua, E. K. J. Boakes, P. D. |
author_facet | Möstl, C. Amerstorfer, T. Palmerio, E. Isavnin, A. Farrugia, C. J. Lowder, C. Winslow, R. M. Donnerer, J. M. Kilpua, E. K. J. Boakes, P. D. |
author_sort | Möstl, C. |
collection | PubMed |
description | Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3‐D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward‐pointing magnetic fields. Here we demonstrate in a proof‐of‐concept way a new approach to predict the southward field B (z) in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three‐Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun‐Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9–13 July 2013. Three‐Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3‐D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left‐handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation. |
format | Online Article Text |
id | pubmed-5947730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59477302018-05-17 Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE Möstl, C. Amerstorfer, T. Palmerio, E. Isavnin, A. Farrugia, C. J. Lowder, C. Winslow, R. M. Donnerer, J. M. Kilpua, E. K. J. Boakes, P. D. Space Weather Research Articles Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3‐D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward‐pointing magnetic fields. Here we demonstrate in a proof‐of‐concept way a new approach to predict the southward field B (z) in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three‐Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun‐Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9–13 July 2013. Three‐Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3‐D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left‐handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation. John Wiley and Sons Inc. 2018-03-07 2018-03 /pmc/articles/PMC5947730/ /pubmed/29780287 http://dx.doi.org/10.1002/2017SW001735 Text en ©2018. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Möstl, C. Amerstorfer, T. Palmerio, E. Isavnin, A. Farrugia, C. J. Lowder, C. Winslow, R. M. Donnerer, J. M. Kilpua, E. K. J. Boakes, P. D. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE |
title | Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE |
title_full | Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE |
title_fullStr | Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE |
title_full_unstemmed | Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE |
title_short | Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE |
title_sort | forward modeling of coronal mass ejection flux ropes in the inner heliosphere with 3dcore |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947730/ https://www.ncbi.nlm.nih.gov/pubmed/29780287 http://dx.doi.org/10.1002/2017SW001735 |
work_keys_str_mv | AT mostlc forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT amerstorfert forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT palmerioe forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT isavnina forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT farrugiacj forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT lowderc forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT winslowrm forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT donnererjm forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT kilpuaekj forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore AT boakespd forwardmodelingofcoronalmassejectionfluxropesintheinnerheliospherewith3dcore |