Cargando…

Meteoric Metal Chemistry in the Martian Atmosphere

Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg(+) ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be...

Descripción completa

Detalles Bibliográficos
Autores principales: Plane, J. M. C., Carrillo‐Sanchez, J. D., Mangan, T. P., Crismani, M. M. J., Schneider, N. M., Määttänen, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947882/
https://www.ncbi.nlm.nih.gov/pubmed/29780678
http://dx.doi.org/10.1002/2017JE005510
_version_ 1783322453908389888
author Plane, J. M. C.
Carrillo‐Sanchez, J. D.
Mangan, T. P.
Crismani, M. M. J.
Schneider, N. M.
Määttänen, A.
author_facet Plane, J. M. C.
Carrillo‐Sanchez, J. D.
Mangan, T. P.
Crismani, M. M. J.
Schneider, N. M.
Määttänen, A.
author_sort Plane, J. M. C.
collection PubMed
description Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg(+) ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol(−1), out of a cosmic dust input of 2.7 ± 1.6 t sol(−1). The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO(2) molecules. Dissociative recombination of MgO(+).(CO(2))(n) cluster ions with electrons to produce MgCO(3) directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO(3) and FeCO(3)) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H(2)O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate‐rich ice particles which can act as nucleating particles for the formation of CO(2)‐ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder.
format Online
Article
Text
id pubmed-5947882
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59478822018-05-17 Meteoric Metal Chemistry in the Martian Atmosphere Plane, J. M. C. Carrillo‐Sanchez, J. D. Mangan, T. P. Crismani, M. M. J. Schneider, N. M. Määttänen, A. J Geophys Res Planets Research Articles Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg(+) ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol(−1), out of a cosmic dust input of 2.7 ± 1.6 t sol(−1). The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO(2) molecules. Dissociative recombination of MgO(+).(CO(2))(n) cluster ions with electrons to produce MgCO(3) directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO(3) and FeCO(3)) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H(2)O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate‐rich ice particles which can act as nucleating particles for the formation of CO(2)‐ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder. John Wiley and Sons Inc. 2018-03-06 2018-03 /pmc/articles/PMC5947882/ /pubmed/29780678 http://dx.doi.org/10.1002/2017JE005510 Text en ©2018. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Plane, J. M. C.
Carrillo‐Sanchez, J. D.
Mangan, T. P.
Crismani, M. M. J.
Schneider, N. M.
Määttänen, A.
Meteoric Metal Chemistry in the Martian Atmosphere
title Meteoric Metal Chemistry in the Martian Atmosphere
title_full Meteoric Metal Chemistry in the Martian Atmosphere
title_fullStr Meteoric Metal Chemistry in the Martian Atmosphere
title_full_unstemmed Meteoric Metal Chemistry in the Martian Atmosphere
title_short Meteoric Metal Chemistry in the Martian Atmosphere
title_sort meteoric metal chemistry in the martian atmosphere
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947882/
https://www.ncbi.nlm.nih.gov/pubmed/29780678
http://dx.doi.org/10.1002/2017JE005510
work_keys_str_mv AT planejmc meteoricmetalchemistryinthemartianatmosphere
AT carrillosanchezjd meteoricmetalchemistryinthemartianatmosphere
AT mangantp meteoricmetalchemistryinthemartianatmosphere
AT crismanimmj meteoricmetalchemistryinthemartianatmosphere
AT schneidernm meteoricmetalchemistryinthemartianatmosphere
AT maattanena meteoricmetalchemistryinthemartianatmosphere