Cargando…
Meteoric Metal Chemistry in the Martian Atmosphere
Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg(+) ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947882/ https://www.ncbi.nlm.nih.gov/pubmed/29780678 http://dx.doi.org/10.1002/2017JE005510 |
_version_ | 1783322453908389888 |
---|---|
author | Plane, J. M. C. Carrillo‐Sanchez, J. D. Mangan, T. P. Crismani, M. M. J. Schneider, N. M. Määttänen, A. |
author_facet | Plane, J. M. C. Carrillo‐Sanchez, J. D. Mangan, T. P. Crismani, M. M. J. Schneider, N. M. Määttänen, A. |
author_sort | Plane, J. M. C. |
collection | PubMed |
description | Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg(+) ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol(−1), out of a cosmic dust input of 2.7 ± 1.6 t sol(−1). The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO(2) molecules. Dissociative recombination of MgO(+).(CO(2))(n) cluster ions with electrons to produce MgCO(3) directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO(3) and FeCO(3)) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H(2)O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate‐rich ice particles which can act as nucleating particles for the formation of CO(2)‐ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder. |
format | Online Article Text |
id | pubmed-5947882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59478822018-05-17 Meteoric Metal Chemistry in the Martian Atmosphere Plane, J. M. C. Carrillo‐Sanchez, J. D. Mangan, T. P. Crismani, M. M. J. Schneider, N. M. Määttänen, A. J Geophys Res Planets Research Articles Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg(+) ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol(−1), out of a cosmic dust input of 2.7 ± 1.6 t sol(−1). The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO(2) molecules. Dissociative recombination of MgO(+).(CO(2))(n) cluster ions with electrons to produce MgCO(3) directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO(3) and FeCO(3)) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H(2)O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate‐rich ice particles which can act as nucleating particles for the formation of CO(2)‐ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder. John Wiley and Sons Inc. 2018-03-06 2018-03 /pmc/articles/PMC5947882/ /pubmed/29780678 http://dx.doi.org/10.1002/2017JE005510 Text en ©2018. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Plane, J. M. C. Carrillo‐Sanchez, J. D. Mangan, T. P. Crismani, M. M. J. Schneider, N. M. Määttänen, A. Meteoric Metal Chemistry in the Martian Atmosphere |
title | Meteoric Metal Chemistry in the Martian Atmosphere |
title_full | Meteoric Metal Chemistry in the Martian Atmosphere |
title_fullStr | Meteoric Metal Chemistry in the Martian Atmosphere |
title_full_unstemmed | Meteoric Metal Chemistry in the Martian Atmosphere |
title_short | Meteoric Metal Chemistry in the Martian Atmosphere |
title_sort | meteoric metal chemistry in the martian atmosphere |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947882/ https://www.ncbi.nlm.nih.gov/pubmed/29780678 http://dx.doi.org/10.1002/2017JE005510 |
work_keys_str_mv | AT planejmc meteoricmetalchemistryinthemartianatmosphere AT carrillosanchezjd meteoricmetalchemistryinthemartianatmosphere AT mangantp meteoricmetalchemistryinthemartianatmosphere AT crismanimmj meteoricmetalchemistryinthemartianatmosphere AT schneidernm meteoricmetalchemistryinthemartianatmosphere AT maattanena meteoricmetalchemistryinthemartianatmosphere |