Cargando…
High throughput nonparametric probability density estimation
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate dat...
Autores principales: | Farmer, Jenny, Jacobs, Donald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947915/ https://www.ncbi.nlm.nih.gov/pubmed/29750803 http://dx.doi.org/10.1371/journal.pone.0196937 |
Ejemplares similares
-
Nonparametric probability density estimation
por: Tapia, Richard A, et al.
Publicado: (1978) -
Nonparametric estimation of probability densities and regression curves
por: Nadaraya, E A
Publicado: (1989) -
Nonparametric kernel density estimation and its computational aspects
por: Gramacki, Artur
Publicado: (2017) -
Universal Sample Size Invariant Measures for Uncertainty Quantification in Density Estimation
por: Farmer, Jenny, et al.
Publicado: (2019) -
Introduction to Nonparametric Estimation
por: Tsybakov, Alexandre B
Publicado: (2009)