Cargando…
Transcript-indexed ATAC-seq for precision immune profiling
T cells create vast amounts of diversity in their T cell receptor (TCR) genes, enabling individual clones to recognize specific peptide-MHC ligands. Here we combine TCR sequencing and assay for transposase-accessible chromatin analysis at the single-cell level to provide information on the TCR speci...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948148/ https://www.ncbi.nlm.nih.gov/pubmed/29686426 http://dx.doi.org/10.1038/s41591-018-0008-8 |
_version_ | 1783322494636130304 |
---|---|
author | Satpathy, Ansuman T. Saligrama, Naresha Buenrostro, Jason D. Wei, Yuning Wu, Beijing Rubin, Adam J. Granja, Jeffrey M. Lareau, Caleb A. Li, Rui Qi, Yanyan Parker, Kevin R. Mumbach, Maxwell R. Serratelli, William S. Gennert, David G. Schep, Alicia N. Corces, M. Ryan Khodadoust, Michael S. Kim, Youn H. Khavari, Paul A. Greenleaf, William J. Davis, Mark M. Chang, Howard Y. |
author_facet | Satpathy, Ansuman T. Saligrama, Naresha Buenrostro, Jason D. Wei, Yuning Wu, Beijing Rubin, Adam J. Granja, Jeffrey M. Lareau, Caleb A. Li, Rui Qi, Yanyan Parker, Kevin R. Mumbach, Maxwell R. Serratelli, William S. Gennert, David G. Schep, Alicia N. Corces, M. Ryan Khodadoust, Michael S. Kim, Youn H. Khavari, Paul A. Greenleaf, William J. Davis, Mark M. Chang, Howard Y. |
author_sort | Satpathy, Ansuman T. |
collection | PubMed |
description | T cells create vast amounts of diversity in their T cell receptor (TCR) genes, enabling individual clones to recognize specific peptide-MHC ligands. Here we combine TCR sequencing and assay for transposase-accessible chromatin analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. Using this approach, termed Transcript-indexed ATAC-seq (T-ATAC-seq), we identify epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers, and primary leukemic T cells from patient samples. In healthy peripheral blood CD4(+) T cells, we identify cis and trans regulators of naive and memory T cell states and find substantial heterogeneity in surface marker-defined T cell populations. In patients with cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and non-leukemic regulatory pathways in T cells from the same individual, separating signals arising from the malignant clone from background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity, and immunotherapy. |
format | Online Article Text |
id | pubmed-5948148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-59481482018-10-23 Transcript-indexed ATAC-seq for precision immune profiling Satpathy, Ansuman T. Saligrama, Naresha Buenrostro, Jason D. Wei, Yuning Wu, Beijing Rubin, Adam J. Granja, Jeffrey M. Lareau, Caleb A. Li, Rui Qi, Yanyan Parker, Kevin R. Mumbach, Maxwell R. Serratelli, William S. Gennert, David G. Schep, Alicia N. Corces, M. Ryan Khodadoust, Michael S. Kim, Youn H. Khavari, Paul A. Greenleaf, William J. Davis, Mark M. Chang, Howard Y. Nat Med Article T cells create vast amounts of diversity in their T cell receptor (TCR) genes, enabling individual clones to recognize specific peptide-MHC ligands. Here we combine TCR sequencing and assay for transposase-accessible chromatin analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. Using this approach, termed Transcript-indexed ATAC-seq (T-ATAC-seq), we identify epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers, and primary leukemic T cells from patient samples. In healthy peripheral blood CD4(+) T cells, we identify cis and trans regulators of naive and memory T cell states and find substantial heterogeneity in surface marker-defined T cell populations. In patients with cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and non-leukemic regulatory pathways in T cells from the same individual, separating signals arising from the malignant clone from background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity, and immunotherapy. 2018-04-23 2018-05 /pmc/articles/PMC5948148/ /pubmed/29686426 http://dx.doi.org/10.1038/s41591-018-0008-8 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Satpathy, Ansuman T. Saligrama, Naresha Buenrostro, Jason D. Wei, Yuning Wu, Beijing Rubin, Adam J. Granja, Jeffrey M. Lareau, Caleb A. Li, Rui Qi, Yanyan Parker, Kevin R. Mumbach, Maxwell R. Serratelli, William S. Gennert, David G. Schep, Alicia N. Corces, M. Ryan Khodadoust, Michael S. Kim, Youn H. Khavari, Paul A. Greenleaf, William J. Davis, Mark M. Chang, Howard Y. Transcript-indexed ATAC-seq for precision immune profiling |
title | Transcript-indexed ATAC-seq for precision immune profiling |
title_full | Transcript-indexed ATAC-seq for precision immune profiling |
title_fullStr | Transcript-indexed ATAC-seq for precision immune profiling |
title_full_unstemmed | Transcript-indexed ATAC-seq for precision immune profiling |
title_short | Transcript-indexed ATAC-seq for precision immune profiling |
title_sort | transcript-indexed atac-seq for precision immune profiling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948148/ https://www.ncbi.nlm.nih.gov/pubmed/29686426 http://dx.doi.org/10.1038/s41591-018-0008-8 |
work_keys_str_mv | AT satpathyansumant transcriptindexedatacseqforprecisionimmuneprofiling AT saligramanaresha transcriptindexedatacseqforprecisionimmuneprofiling AT buenrostrojasond transcriptindexedatacseqforprecisionimmuneprofiling AT weiyuning transcriptindexedatacseqforprecisionimmuneprofiling AT wubeijing transcriptindexedatacseqforprecisionimmuneprofiling AT rubinadamj transcriptindexedatacseqforprecisionimmuneprofiling AT granjajeffreym transcriptindexedatacseqforprecisionimmuneprofiling AT lareaucaleba transcriptindexedatacseqforprecisionimmuneprofiling AT lirui transcriptindexedatacseqforprecisionimmuneprofiling AT qiyanyan transcriptindexedatacseqforprecisionimmuneprofiling AT parkerkevinr transcriptindexedatacseqforprecisionimmuneprofiling AT mumbachmaxwellr transcriptindexedatacseqforprecisionimmuneprofiling AT serratelliwilliams transcriptindexedatacseqforprecisionimmuneprofiling AT gennertdavidg transcriptindexedatacseqforprecisionimmuneprofiling AT schepalician transcriptindexedatacseqforprecisionimmuneprofiling AT corcesmryan transcriptindexedatacseqforprecisionimmuneprofiling AT khodadoustmichaels transcriptindexedatacseqforprecisionimmuneprofiling AT kimyounh transcriptindexedatacseqforprecisionimmuneprofiling AT khavaripaula transcriptindexedatacseqforprecisionimmuneprofiling AT greenleafwilliamj transcriptindexedatacseqforprecisionimmuneprofiling AT davismarkm transcriptindexedatacseqforprecisionimmuneprofiling AT changhowardy transcriptindexedatacseqforprecisionimmuneprofiling |