Cargando…

ICP Versus Laser Doppler Cerebrovascular Reactivity Indices to Assess Brain Autoregulatory Capacity

BACKGROUND: To explore the relationship between various autoregulatory indices in order to determine which approximate small vessel/microvascular (MV) autoregulatory capacity most accurately. METHODS: Utilizing a retrospective cohort of traumatic brain injury patients (N = 41) with: transcranial Dop...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeiler, F. A., Donnelly, J., Cardim, D., Menon, D. K., Smielewski, P., Czosnyka, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948245/
https://www.ncbi.nlm.nih.gov/pubmed/29043544
http://dx.doi.org/10.1007/s12028-017-0472-x
Descripción
Sumario:BACKGROUND: To explore the relationship between various autoregulatory indices in order to determine which approximate small vessel/microvascular (MV) autoregulatory capacity most accurately. METHODS: Utilizing a retrospective cohort of traumatic brain injury patients (N = 41) with: transcranial Doppler (TCD), intracranial pressure (ICP) and cortical laser Doppler flowmetry (LDF), we calculated various continuous indices of autoregulation and cerebrovascular responsiveness: A. ICP derived [pressure reactivity index (PRx)—correlation between ICP and mean arterial pressure (MAP), PAx—correlation between pulse amplitude of ICP (AMP) and MAP, RAC—correlation between AMP and cerebral perfusion pressure (CPP)], B. TCD derived (Mx—correlation between mean flow velocity (FVm) and CPP, Mx_a—correlation between FVm and MAP, Sx—correlation between systolic flow velocity (FVs) and CPP, Sx_a—correlation between FVs and MAP, Dx—correlation between diastolic flow index (FVd) and CPP, Dx_a—correlation between FVd and MAP], and LDF derived (Lx—correlation between LDF cerebral blood flow [CBF] and CPP, Lx_a—correlation between LDF-CBF and MAP). We assessed the relationship between these indices via Pearson correlation, Friedman test, principal component analysis (PCA), agglomerative hierarchal clustering (AHC), and k-means cluster analysis (KMCA). RESULTS: LDF-based autoregulatory index (Lx) was most associated with TCD-based Mx/Mx_a and Dx/Dx_a across Pearson correlation, PCA, AHC, and KMCA. Lx was only remotely associated with ICP-based indices (PRx, PAx, RAC). TCD-based Sx/Sx_a was more closely associated with ICP-derived PRx, PAx and RAC. This indicates that vascular-derived indices of autoregulatory capacity (i.e., TCD and LDF based) covary, with Sx/Sx_a being the exception, whereas indices of cerebrovascular reactivity derived from pulsatile CBV (i.e., ICP indices) appear to not be closely related to those of vascular origin. CONCLUSIONS: Transcranial Doppler Mx is the most closely associated with LDF-based Lx/Lx_a. Both Sx/Sx-a and the ICP-derived indices appear to be dissociated with LDF-based cerebrovascular reactivity, leaving Mx/Mx-a as a better surrogate for the assessment of cortical small vessel/MV cerebrovascular reactivity. Sx/Sx_a cocluster/covary with ICP-derived indices, as seen in our previous work. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12028-017-0472-x) contains supplementary material, which is available to authorized users.