Cargando…

Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film

The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanopart...

Descripción completa

Detalles Bibliográficos
Autor principal: Li, Wenbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948253/
https://www.ncbi.nlm.nih.gov/pubmed/29780289
http://dx.doi.org/10.1007/s11468-017-0598-x
Descripción
Sumario:The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.