Cargando…
The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity
Precisely controlled mechanisms have been evolved to rescue impeded DNA replication resulting from encountered obstacles and involve a set of low-fidelity translesion synthesis (TLS) DNA polymerases. Studies in recent years have brought new insights into those TLS polymerases, especially concerning...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948306/ https://www.ncbi.nlm.nih.gov/pubmed/29189894 http://dx.doi.org/10.1007/s00294-017-0789-1 |
_version_ | 1783322523309441024 |
---|---|
author | Szwajczak, Ewa Fijalkowska, Iwona J. Suski, Catherine |
author_facet | Szwajczak, Ewa Fijalkowska, Iwona J. Suski, Catherine |
author_sort | Szwajczak, Ewa |
collection | PubMed |
description | Precisely controlled mechanisms have been evolved to rescue impeded DNA replication resulting from encountered obstacles and involve a set of low-fidelity translesion synthesis (TLS) DNA polymerases. Studies in recent years have brought new insights into those TLS polymerases, especially concerning the structure and subunit composition of DNA polymerase zeta (Pol ζ). Pol ζ is predominantly involved in induced mutagenesis as well as the bypass of noncanonical DNA structures, and it is proficient in extending from terminal mismatched nucleotides incorporated by major replicative DNA polymerases. Two active forms of Pol ζ, heterodimeric (Pol ζ(2)) and heterotetrameric (Pol ζ(4)) ones, have been identified and studied. Here, in the light of recent publications regarding induced and spontaneous mutagenesis and diverse interactions within Pol ζ holoenzyme, combined with Pol ζ binding to the TLS polymerase Rev1p, we discuss the subunit composition of Pol ζ in various cellular physiological conditions. Available data show that it is the heterotetrameric form of Pol ζ that is involved both during spontaneous and induced mutagenesis, and underline the importance of interactions within Pol ζ when an increased Pol ζ recruitment occurs. Understanding Pol ζ function in the bypass of DNA obstacles would give a significant insight into cellular tolerance of DNA damage, genetic instability and the onset of cancer progression. |
format | Online Article Text |
id | pubmed-5948306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-59483062018-05-17 The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity Szwajczak, Ewa Fijalkowska, Iwona J. Suski, Catherine Curr Genet Review Precisely controlled mechanisms have been evolved to rescue impeded DNA replication resulting from encountered obstacles and involve a set of low-fidelity translesion synthesis (TLS) DNA polymerases. Studies in recent years have brought new insights into those TLS polymerases, especially concerning the structure and subunit composition of DNA polymerase zeta (Pol ζ). Pol ζ is predominantly involved in induced mutagenesis as well as the bypass of noncanonical DNA structures, and it is proficient in extending from terminal mismatched nucleotides incorporated by major replicative DNA polymerases. Two active forms of Pol ζ, heterodimeric (Pol ζ(2)) and heterotetrameric (Pol ζ(4)) ones, have been identified and studied. Here, in the light of recent publications regarding induced and spontaneous mutagenesis and diverse interactions within Pol ζ holoenzyme, combined with Pol ζ binding to the TLS polymerase Rev1p, we discuss the subunit composition of Pol ζ in various cellular physiological conditions. Available data show that it is the heterotetrameric form of Pol ζ that is involved both during spontaneous and induced mutagenesis, and underline the importance of interactions within Pol ζ when an increased Pol ζ recruitment occurs. Understanding Pol ζ function in the bypass of DNA obstacles would give a significant insight into cellular tolerance of DNA damage, genetic instability and the onset of cancer progression. Springer Berlin Heidelberg 2017-11-30 2018 /pmc/articles/PMC5948306/ /pubmed/29189894 http://dx.doi.org/10.1007/s00294-017-0789-1 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Review Szwajczak, Ewa Fijalkowska, Iwona J. Suski, Catherine The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity |
title | The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity |
title_full | The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity |
title_fullStr | The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity |
title_full_unstemmed | The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity |
title_short | The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity |
title_sort | importance of an interaction network for proper dna polymerase ζ heterotetramer activity |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948306/ https://www.ncbi.nlm.nih.gov/pubmed/29189894 http://dx.doi.org/10.1007/s00294-017-0789-1 |
work_keys_str_mv | AT szwajczakewa theimportanceofaninteractionnetworkforproperdnapolymerasezheterotetrameractivity AT fijalkowskaiwonaj theimportanceofaninteractionnetworkforproperdnapolymerasezheterotetrameractivity AT suskicatherine theimportanceofaninteractionnetworkforproperdnapolymerasezheterotetrameractivity AT szwajczakewa importanceofaninteractionnetworkforproperdnapolymerasezheterotetrameractivity AT fijalkowskaiwonaj importanceofaninteractionnetworkforproperdnapolymerasezheterotetrameractivity AT suskicatherine importanceofaninteractionnetworkforproperdnapolymerasezheterotetrameractivity |