Cargando…
Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access
BACKGROUND: On December 6 and 7, 2017, the US Department of Health and Human Services (HHS) hosted its first Code-a-Thon event aimed at leveraging technology and data-driven solutions to help combat the opioid epidemic. The authors—an interdisciplinary team from academia, the private sector, and the...
Autores principales: | Mackey, Tim, Kalyanam, Janani, Klugman, Josh, Kuzmenko, Ella, Gupta, Rashmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948414/ https://www.ncbi.nlm.nih.gov/pubmed/29613851 http://dx.doi.org/10.2196/10029 |
Ejemplares similares
-
Detection of illicit online sales of fentanyls via Twitter
por: Mackey, Tim K., et al.
Publicado: (2017) -
Opioids and the Internet: Convergence of Technology and Policy to Address the Illicit Online Sales of Opioids
por: Mackey, Tim K
Publicado: (2018) -
Big Data, Natural Language Processing, and Deep Learning to Detect and Characterize Illicit COVID-19 Product Sales: Infoveillance Study on Twitter and Instagram
por: Mackey, Tim Ken, et al.
Publicado: (2020) -
Global Reach of Direct-to-Consumer Advertising Using Social Media for Illicit Online Drug Sales
por: Mackey, Tim Ken, et al.
Publicado: (2013) -
Use of Machine Learning to Detect Wildlife Product Promotion and Sales on Twitter
por: Xu, Qing, et al.
Publicado: (2019)