Cargando…
LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, s...
Autores principales: | He, Ziyang, Zhang, Xiaoqing, Cao, Yangjie, Liu, Zhi, Zhang, Bo, Wang, Xiaoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948502/ https://www.ncbi.nlm.nih.gov/pubmed/29673171 http://dx.doi.org/10.3390/s18041229 |
Ejemplares similares
-
A Lightweight Cipher Based on Salsa20 for Resource-Constrained IoT Devices
por: Lara, Evangelina, et al.
Publicado: (2018) -
Mixed YOLOv3-LITE: A Lightweight Real-Time Object Detection Method
por: Zhao, Haipeng, et al.
Publicado: (2020) -
GL-YOLO-Lite: A Novel Lightweight Fallen Person Detection Model
por: Dai, Yuan, et al.
Publicado: (2023) -
Professional Flash Lite Mobile Development
por: Anderson, J G
Publicado: (2010) -
Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings
por: Karmakar, Ranit, et al.
Publicado: (2022)