Cargando…
Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a labe...
Autores principales: | Baldominos, Alejandro, Saez, Yago, Isasi, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948523/ https://www.ncbi.nlm.nih.gov/pubmed/29690587 http://dx.doi.org/10.3390/s18041288 |
Ejemplares similares
-
A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity Recognition
por: Saez, Yago, et al.
Publicado: (2016) -
A Comparison of Machine Learning and Deep Learning Techniques for Activity Recognition using Mobile Devices
por: Baldominos, Alejandro, et al.
Publicado: (2019) -
Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-Based Distributed Deep Learning
por: Baldominos, Alejandro, et al.
Publicado: (2019) -
Using Convolutional Neural Networks with Multiple Thermal Sensors for Unobtrusive Pose Recognition
por: Burns, Matthew, et al.
Publicado: (2020) -
Internet Use and Psychological Well-Being at Advanced Age: Evidence from the English Longitudinal Study of Aging
por: Quintana, David, et al.
Publicado: (2018)