Cargando…
Latent Factors Limiting the Performance of sEMG-Interfaces
Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interf...
Autores principales: | Lobov, Sergey, Krilova, Nadia, Kastalskiy, Innokentiy, Kazantsev, Victor, Makarov, Valeri A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948532/ https://www.ncbi.nlm.nih.gov/pubmed/29642410 http://dx.doi.org/10.3390/s18041122 |
Ejemplares similares
-
A Spiking Neural Network in sEMG Feature Extraction
por: Lobov, Sergey, et al.
Publicado: (2015) -
A Neuromuscular Interface for Robotic Devices Control
por: Kastalskiy, Innokentiy, et al.
Publicado: (2018) -
EOG-sEMG Human Interface for Communication
por: Tamura, Hiroki, et al.
Publicado: (2016) -
Evaluation of User-Prosthesis-Interfaces for sEMG-Based Multifunctional Prosthetic Hands
por: Fajardo, Julio, et al.
Publicado: (2021) -
Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU–sEMG Interface
por: Shahzad, Waseem, et al.
Publicado: (2019)