Cargando…
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection with Supervised Learning
This paper describes a wearable Fall Detection System (FDS) based on a body-area network consisting of four nodes provided with inertial sensors and Bluetooth wireless interfaces. The signals captured by the nodes are sent to a smartphone which simultaneously acts as another sensing point. In contra...
Autores principales: | Santoyo-Ramón, José Antonio, Casilari, Eduardo, Cano-García, José Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948572/ https://www.ncbi.nlm.nih.gov/pubmed/29642638 http://dx.doi.org/10.3390/s18041155 |
Ejemplares similares
-
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection
por: Casilari, Eduardo, et al.
Publicado: (2016) -
A Study of One-Class Classification Algorithms for Wearable Fall Sensors
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2021) -
Analysis of Public Datasets for Wearable Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2017) -
A study on the impact of the users’ characteristics on the performance of wearable fall detection systems
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2021) -
On the Heterogeneity of Existing Repositories of Movements Intended for the Evaluation of Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2020)