Cargando…
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer
An effective bearing fault detection and diagnosis (FDD) model is important for ensuring the normal and safe operation of machines. This paper presents a reliable model-reference observer technique for FDD based on modeling of a bearing’s vibration data by analyzing the dynamic properties of the bea...
Autores principales: | Piltan, Farzin, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948592/ https://www.ncbi.nlm.nih.gov/pubmed/29642459 http://dx.doi.org/10.3390/s18041128 |
Ejemplares similares
-
Bearing Fault Diagnosis Using an Extended Variable Structure Feedback Linearization Observer
por: Piltan, Farzin, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
por: Piltan, Farzin, et al.
Publicado: (2023) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
por: Piltan, Farzin, et al.
Publicado: (2021) -
Crack Size Identification for Bearings Using an Adaptive Digital Twin
por: Piltan, Farzin, et al.
Publicado: (2021)