Cargando…
Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns
The electrocardiogram (ECG) waveform conveys information regarding the electrical property of the heart. The patterns vary depending on the individual heart characteristics. ECG features can be potentially used for biometric recognition. This study presents a new method using the entire ECG waveform...
Autores principales: | Lee, Wonki, Kim, Seulgee, Kim, Daeeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948610/ https://www.ncbi.nlm.nih.gov/pubmed/29597283 http://dx.doi.org/10.3390/s18041005 |
Ejemplares similares
-
History-Based Response Threshold Model for Division of Labor in Multi-Agent Systems
por: Lee, Wonki, et al.
Publicado: (2017) -
Autonomous Shepherding Behaviors of Multiple Target Steering Robots
por: Lee, Wonki, et al.
Publicado: (2017) -
Biometric Contrastive Learning for Data-Efficient Deep Learning from Electrocardiographic Images
por: Sangha, Veer, et al.
Publicado: (2023) -
“It's a part of the patient”: The experiences of patients with cancer undergoing home-based chemotherapy from patients' and nurses' perspectives
por: Jang, Hyoeun, et al.
Publicado: (2022) -
Electrocardiographic recording direction impacts ventricular fibrillation waveform measurements: A potential pitfall for VF-waveform guided defibrillation protocols
por: Thannhauser, Jos, et al.
Publicado: (2021)