Cargando…
Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images
In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or no...
Autores principales: | Pang, Shiyan, Hu, Xiangyun, Cai, Zhongliang, Gong, Jinqi, Zhang, Mi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948611/ https://www.ncbi.nlm.nih.gov/pubmed/29587371 http://dx.doi.org/10.3390/s18040966 |
Ejemplares similares
-
Patch Matching and Dense CRF-Based Co-Refinement for Building Change Detection from Bi-Temporal Aerial Images
por: Gong, Jinqi, et al.
Publicado: (2019) -
Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping
por: Qiao, Yuhui, et al.
Publicado: (2023) -
Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners
por: Valero, Enrique, et al.
Publicado: (2012) -
Vehicle Localization Using 3D Building Models and Point Cloud Matching
por: Ballardini, Augusto Luis, et al.
Publicado: (2021) -
Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing
por: Li, Dawei, et al.
Publicado: (2018)