Cargando…
A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication
All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new met...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948624/ https://www.ncbi.nlm.nih.gov/pubmed/29597285 http://dx.doi.org/10.3390/s18041007 |
Sumario: | All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new method can be applied to build a better driver authentication system based on the accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed method, we created an experimental system that analyzes driving behavior using the built-in sensors of a smartwatch. The experimental results for driver authentication—an equal error rate (EER) of 4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment—confirm the feasibility of this approach. |
---|