Cargando…
Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network
Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-pr...
Autores principales: | Xiao, Aoran, Wang, Zhongyuan, Wang, Lei, Ren, Yexian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948634/ https://www.ncbi.nlm.nih.gov/pubmed/29652838 http://dx.doi.org/10.3390/s18041194 |
Ejemplares similares
-
Lightweight Super-Resolution with Self-Calibrated Convolution for Panoramic Videos
por: Shang, Fanjie, et al.
Publicado: (2022) -
Video Super-Resolution Method Using Deformable Convolution-Based Alignment Network
por: Lee, Yooho, et al.
Publicado: (2022) -
Identifying patterns in urban housing density in developing countries using convolutional networks and satellite imagery
por: Sanya, Rahman, et al.
Publicado: (2020) -
Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery
por: Marquez, L., et al.
Publicado: (2022) -
Instant multicolor super-resolution microscopy with deep convolutional neural network
por: Wang, Songyue, et al.
Publicado: (2021)