Cargando…
Optimize the Coverage Probability of Prediction Interval for Anomaly Detection of Sensor-Based Monitoring Series
Effective anomaly detection of sensing data is essential for identifying potential system failures. Because they require no prior knowledge or accumulated labels, and provide uncertainty presentation, the probability prediction methods (e.g., Gaussian process regression (GPR) and relevance vector ma...
Autores principales: | Pang, Jingyue, Liu, Datong, Peng, Yu, Peng, Xiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948704/ https://www.ncbi.nlm.nih.gov/pubmed/29587372 http://dx.doi.org/10.3390/s18040967 |
Ejemplares similares
-
Collective Anomalies Detection for Sensing Series of Spacecraft Telemetry with the Fusion of Probability Prediction and Markov Chain Model
por: Pang, Jingyue, et al.
Publicado: (2019) -
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
por: Liu, Liansheng, et al.
Publicado: (2016) -
UAV Sensor Fault Detection Using a Classifier without Negative Samples: A Local Density Regulated Optimization Algorithm†
por: Guo, Kai, et al.
Publicado: (2019) -
Anomaly detection for monitoring: a statistical approach to time series anomaly detection
por: Jinka, Preetam, et al.
Publicado: (2015) -
Optimal coverage in wireless sensor networks
por: Wu, Weili, et al.
Publicado: (2020)