Cargando…
A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems
Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that ex...
Autores principales: | Wu, Zhenyu, Guo, Yang, Lin, Wenfang, Yu, Shuyang, Ji, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948747/ https://www.ncbi.nlm.nih.gov/pubmed/29621131 http://dx.doi.org/10.3390/s18041096 |
Ejemplares similares
-
An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
por: Zhang, Long, et al.
Publicado: (2022) -
Fault Diagnosis Method for Imbalanced Data Based on Multi-Signal Fusion and Improved Deep Convolution Generative Adversarial Network
por: Deng, Congying, et al.
Publicado: (2023) -
Intelligent Fault Diagnosis of Industrial Robot Based on Multiclass Mahalanobis-Taguchi System for Imbalanced Data
por: Sun, Yue, et al.
Publicado: (2022) -
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
Ensemble Capsule Network with an Attention Mechanism for the Fault Diagnosis of Bearings from Imbalanced Data Samples
por: Xu, Zengbing, et al.
Publicado: (2022)