Cargando…
Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model
Fabric defect detection is a necessary and essential step of quality control in the textile manufacturing industry. Traditional fabric inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. In this paper, w...
Autores principales: | Mei, Shuang, Wang, Yudan, Wen, Guojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948749/ https://www.ncbi.nlm.nih.gov/pubmed/29614813 http://dx.doi.org/10.3390/s18041064 |
Ejemplares similares
-
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images
por: Solovyeva, Elena, et al.
Publicado: (2022) -
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022) -
Author Correction: Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2023) -
Transfer Learning-Based Multi-Scale Denoising Convolutional Neural Network for Prostate Cancer Detection
por: Chui, Kwok Tai, et al.
Publicado: (2022)