Cargando…
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple c...
Autores principales: | Duong, Bach Phi, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948782/ https://www.ncbi.nlm.nih.gov/pubmed/29642466 http://dx.doi.org/10.3390/s18041129 |
Ejemplares similares
-
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
por: Piltan, Farzin, et al.
Publicado: (2021) -
A Reliable Health Indicator for Fault Prognosis of Bearings
por: Duong, Bach Phi, et al.
Publicado: (2018) -
Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
por: Toma, Rafia Nishat, et al.
Publicado: (2020) -
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer
por: Piltan, Farzin, et al.
Publicado: (2018) -
Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
por: Pham, Minh Tuan, et al.
Publicado: (2020)