Cargando…
Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection
A sensitive and selective optical DNA biosensor was developed for dengue virus detection based on novel square-planar piperidine side chain-functionalized N,N′-bis-4-(hydroxysalicylidene)-phenylenediamine-nickel(II), which was able to intercalate via nucleobase stacking within DNA and be functionali...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948868/ https://www.ncbi.nlm.nih.gov/pubmed/29649118 http://dx.doi.org/10.3390/s18041173 |
_version_ | 1783322649123880960 |
---|---|
author | Ariffin, Eda Yuhana Tan, Ling Ling Abd. Karim, Nurul Huda Yook Heng, Lee |
author_facet | Ariffin, Eda Yuhana Tan, Ling Ling Abd. Karim, Nurul Huda Yook Heng, Lee |
author_sort | Ariffin, Eda Yuhana |
collection | PubMed |
description | A sensitive and selective optical DNA biosensor was developed for dengue virus detection based on novel square-planar piperidine side chain-functionalized N,N′-bis-4-(hydroxysalicylidene)-phenylenediamine-nickel(II), which was able to intercalate via nucleobase stacking within DNA and be functionalized as an optical DNA hybridization marker. 3-Aminopropyltriethoxysilane (APTS)-modified porous silica nanospheres (PSiNs), was synthesized with a facile mini-emulsion method to act as a high capacity DNA carrier matrix. The Schiff base salphen complexes-labelled probe to target nucleic acid on the PSiNs renders a colour change of the DNA biosensor to a yellow background colour, which could be quantified via a reflectance transduction method. The reflectometric DNA biosensor demonstrated a wide linear response range to target DNA over the concentration range of 1.0 × 10(−16)–1.0 × 10(−10) M (R(2) = 0.9879) with an ultralow limit of detection (LOD) at 0.2 aM. The optical DNA biosensor response was stable and maintainable at 92.8% of its initial response for up to seven days of storage duration with a response time of 90 min. The reflectance DNA biosensor obtained promising recovery values of close to 100% for the detection of spiked synthetic dengue virus serotypes 2 (DENV-2) DNA concentration in non-invasive human samples, indicating the high accuracy of the proposed DNA analytical method for early diagnosis of all potential infectious diseases or pathological genotypes. |
format | Online Article Text |
id | pubmed-5948868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59488682018-05-17 Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection Ariffin, Eda Yuhana Tan, Ling Ling Abd. Karim, Nurul Huda Yook Heng, Lee Sensors (Basel) Article A sensitive and selective optical DNA biosensor was developed for dengue virus detection based on novel square-planar piperidine side chain-functionalized N,N′-bis-4-(hydroxysalicylidene)-phenylenediamine-nickel(II), which was able to intercalate via nucleobase stacking within DNA and be functionalized as an optical DNA hybridization marker. 3-Aminopropyltriethoxysilane (APTS)-modified porous silica nanospheres (PSiNs), was synthesized with a facile mini-emulsion method to act as a high capacity DNA carrier matrix. The Schiff base salphen complexes-labelled probe to target nucleic acid on the PSiNs renders a colour change of the DNA biosensor to a yellow background colour, which could be quantified via a reflectance transduction method. The reflectometric DNA biosensor demonstrated a wide linear response range to target DNA over the concentration range of 1.0 × 10(−16)–1.0 × 10(−10) M (R(2) = 0.9879) with an ultralow limit of detection (LOD) at 0.2 aM. The optical DNA biosensor response was stable and maintainable at 92.8% of its initial response for up to seven days of storage duration with a response time of 90 min. The reflectance DNA biosensor obtained promising recovery values of close to 100% for the detection of spiked synthetic dengue virus serotypes 2 (DENV-2) DNA concentration in non-invasive human samples, indicating the high accuracy of the proposed DNA analytical method for early diagnosis of all potential infectious diseases or pathological genotypes. MDPI 2018-04-12 /pmc/articles/PMC5948868/ /pubmed/29649118 http://dx.doi.org/10.3390/s18041173 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ariffin, Eda Yuhana Tan, Ling Ling Abd. Karim, Nurul Huda Yook Heng, Lee Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection |
title | Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection |
title_full | Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection |
title_fullStr | Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection |
title_full_unstemmed | Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection |
title_short | Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection |
title_sort | optical dna biosensor based on square-planar ethyl piperidine substituted nickel(ii) salphen complex for dengue virus detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948868/ https://www.ncbi.nlm.nih.gov/pubmed/29649118 http://dx.doi.org/10.3390/s18041173 |
work_keys_str_mv | AT ariffinedayuhana opticaldnabiosensorbasedonsquareplanarethylpiperidinesubstitutednickeliisalphencomplexfordenguevirusdetection AT tanlingling opticaldnabiosensorbasedonsquareplanarethylpiperidinesubstitutednickeliisalphencomplexfordenguevirusdetection AT abdkarimnurulhuda opticaldnabiosensorbasedonsquareplanarethylpiperidinesubstitutednickeliisalphencomplexfordenguevirusdetection AT yookhenglee opticaldnabiosensorbasedonsquareplanarethylpiperidinesubstitutednickeliisalphencomplexfordenguevirusdetection |