Cargando…
Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest
Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and r...
Autores principales: | Ma, Suliang, Chen, Mingxuan, Wu, Jianwen, Wang, Yuhao, Jia, Bowen, Jiang, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948935/ https://www.ncbi.nlm.nih.gov/pubmed/29659548 http://dx.doi.org/10.3390/s18041221 |
Ejemplares similares
-
Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection
por: Yuan, Yang, et al.
Publicado: (2019) -
Intelligent Early Fault Diagnosis of Space Flywheel Rotor System
por: Liao, Hui, et al.
Publicado: (2023) -
Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox
por: Guo, Jianwen, et al.
Publicado: (2020) -
Fault diagnosis method of submersible screw pump based on random forest
por: Jiang, Minzheng, et al.
Publicado: (2020) -
A novel intelligent fault identification method based on random forests for HVDC transmission lines
por: Wu, Hao, et al.
Publicado: (2020)