Cargando…
A Closed-Form Error Model of Straight Lines for Improved Data Association and Sensor Fusing
Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and...
Autor principal: | Sommer, Volker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949030/ https://www.ncbi.nlm.nih.gov/pubmed/29673205 http://dx.doi.org/10.3390/s18041236 |
Ejemplares similares
-
Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks
por: Yan, Yongsheng, et al.
Publicado: (2015) -
Fusing metabolomics data sets with heterogeneous measurement errors
por: Waaijenborg, Sandra, et al.
Publicado: (2018) -
FuseAD: Unsupervised Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models
por: Munir, Mohsin, et al.
Publicado: (2019) -
Splicing Measurement and Compensation of Straightness Errors for Ultra-Precision Guideways
por: Zhou, Lian, et al.
Publicado: (2023) -
Beam line from straight-section 16
por: CERN PhotoLab
Publicado: (1971)