Cargando…

Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia

INTRODUCTION: Inadequate trophoblast invasion and placentation are widely believed to contribute to preeclampsia, and multiple lines of evidence indicate the involvement of hypoxia in preeclampsia. However, the molecular mechanisms underlying the association of placental hypoxia with preeclampsia ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Hong-Mei, Qu, Li-Ping, Li, Xiao-Yan, Pan, Xian-Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949914/
https://www.ncbi.nlm.nih.gov/pubmed/29765448
http://dx.doi.org/10.5114/aoms.2016.63261
_version_ 1783322798306885632
author Qu, Hong-Mei
Qu, Li-Ping
Li, Xiao-Yan
Pan, Xian-Zhen
author_facet Qu, Hong-Mei
Qu, Li-Ping
Li, Xiao-Yan
Pan, Xian-Zhen
author_sort Qu, Hong-Mei
collection PubMed
description INTRODUCTION: Inadequate trophoblast invasion and placentation are widely believed to contribute to preeclampsia, and multiple lines of evidence indicate the involvement of hypoxia in preeclampsia. However, the molecular mechanisms underlying the association of placental hypoxia with preeclampsia are not clear. MATERIAL AND METHODS: The present study focused on the role in preeclampsia of heme oxygenase 1 (HO-1), which is an inducible isoform of HO in response to hypoxia, via examining the expression of HO-1 and the expression and phosphorylation (Tyr705) of Signal transducer and activator of transcription (STAT) 3 in preeclamptic placentas via the immunohistochemical method, western blotting assay and RT-qPCR method. Then we investigated the regulation by HO-1 of the expression and phosphorylation of STAT3 in human placental choriocarcinoma JEG-3 cells under hypoxia. RESULTS: There was upregulation of HO-1 at both mRNA (1.506 ±0.08347 (N = 37) vs. 1.000 ±0.08854 (N = 31), p < 0.0001) and protein (0.630 ±0.155 (N = 35) vs. 0.310 ±0.052, 0.630 ±0.155 (N = 35), p < 0.001) levels and a reduced level of STAT3 phosphorylation (Tyr 705) in the preeclamptic placental tissues, compared to normal placental tissues (0.143 ±0.027 (N = 35) vs. 0.194 ±0.028 (N = 35), p < 0.01). Also, in vitro experiments demonstrated that HO-1 was markedly promoted by hypoxia in human placental choriocarcinoma JEG-3 cells, 6 or 12 h post treatment (p < 0.05 or p < 0.01). However, the STAT3 phosphorylation (Tyr 705) was attenuated by sustained hypoxia (p < 0.01). Moreover, it was demonstrated that HO-1 overexpression significantly inhibited the hypoxia-promoted STAT3 phosphorylation (Tyr 705). CONCLUSIONS: HO-1 was overexpressed in PE placenta, in association with reduced STAT3 phosphorylation (Tyr 705). HO-1 inhibits the STAT3 phosphorylation in placental JEG-3 cells under hypoxia. Thus, we speculate that overexpressed HO-1 might contribute to the reduced STAT3 phosphorylation (Tyr 705) and the pathogenesis of preeclampsia.
format Online
Article
Text
id pubmed-5949914
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Termedia Publishing House
record_format MEDLINE/PubMed
spelling pubmed-59499142018-05-14 Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia Qu, Hong-Mei Qu, Li-Ping Li, Xiao-Yan Pan, Xian-Zhen Arch Med Sci Basic Research INTRODUCTION: Inadequate trophoblast invasion and placentation are widely believed to contribute to preeclampsia, and multiple lines of evidence indicate the involvement of hypoxia in preeclampsia. However, the molecular mechanisms underlying the association of placental hypoxia with preeclampsia are not clear. MATERIAL AND METHODS: The present study focused on the role in preeclampsia of heme oxygenase 1 (HO-1), which is an inducible isoform of HO in response to hypoxia, via examining the expression of HO-1 and the expression and phosphorylation (Tyr705) of Signal transducer and activator of transcription (STAT) 3 in preeclamptic placentas via the immunohistochemical method, western blotting assay and RT-qPCR method. Then we investigated the regulation by HO-1 of the expression and phosphorylation of STAT3 in human placental choriocarcinoma JEG-3 cells under hypoxia. RESULTS: There was upregulation of HO-1 at both mRNA (1.506 ±0.08347 (N = 37) vs. 1.000 ±0.08854 (N = 31), p < 0.0001) and protein (0.630 ±0.155 (N = 35) vs. 0.310 ±0.052, 0.630 ±0.155 (N = 35), p < 0.001) levels and a reduced level of STAT3 phosphorylation (Tyr 705) in the preeclamptic placental tissues, compared to normal placental tissues (0.143 ±0.027 (N = 35) vs. 0.194 ±0.028 (N = 35), p < 0.01). Also, in vitro experiments demonstrated that HO-1 was markedly promoted by hypoxia in human placental choriocarcinoma JEG-3 cells, 6 or 12 h post treatment (p < 0.05 or p < 0.01). However, the STAT3 phosphorylation (Tyr 705) was attenuated by sustained hypoxia (p < 0.01). Moreover, it was demonstrated that HO-1 overexpression significantly inhibited the hypoxia-promoted STAT3 phosphorylation (Tyr 705). CONCLUSIONS: HO-1 was overexpressed in PE placenta, in association with reduced STAT3 phosphorylation (Tyr 705). HO-1 inhibits the STAT3 phosphorylation in placental JEG-3 cells under hypoxia. Thus, we speculate that overexpressed HO-1 might contribute to the reduced STAT3 phosphorylation (Tyr 705) and the pathogenesis of preeclampsia. Termedia Publishing House 2016-10-26 2018-04 /pmc/articles/PMC5949914/ /pubmed/29765448 http://dx.doi.org/10.5114/aoms.2016.63261 Text en Copyright: © 2016 Termedia & Banach http://creativecommons.org/licenses/by-nc-sa/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
spellingShingle Basic Research
Qu, Hong-Mei
Qu, Li-Ping
Li, Xiao-Yan
Pan, Xian-Zhen
Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia
title Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia
title_full Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia
title_fullStr Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia
title_full_unstemmed Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia
title_short Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia
title_sort overexpressed ho-1 is associated with reduced stat3 activation in preeclampsia placenta and inhibits stat3 phosphorylation in placental jeg-3 cells under hypoxia
topic Basic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949914/
https://www.ncbi.nlm.nih.gov/pubmed/29765448
http://dx.doi.org/10.5114/aoms.2016.63261
work_keys_str_mv AT quhongmei overexpressedho1isassociatedwithreducedstat3activationinpreeclampsiaplacentaandinhibitsstat3phosphorylationinplacentaljeg3cellsunderhypoxia
AT quliping overexpressedho1isassociatedwithreducedstat3activationinpreeclampsiaplacentaandinhibitsstat3phosphorylationinplacentaljeg3cellsunderhypoxia
AT lixiaoyan overexpressedho1isassociatedwithreducedstat3activationinpreeclampsiaplacentaandinhibitsstat3phosphorylationinplacentaljeg3cellsunderhypoxia
AT panxianzhen overexpressedho1isassociatedwithreducedstat3activationinpreeclampsiaplacentaandinhibitsstat3phosphorylationinplacentaljeg3cellsunderhypoxia