Cargando…

Lactoferrin and free secretory component of human milk inhibit the adhesion of enteropathogenic Escherichia coli to HeLa cells

BACKGROUND: Diarrhoea caused by Escherichia coli is an important cause of infant morbidity and mortality in developing countries. Enteropathogenic Escherichia coli (EPEC) is considered one of the major causes of diarrhoea in children living in developing countries. The ability of diarrhoeagenic stra...

Descripción completa

Detalles Bibliográficos
Autores principales: de Araújo, Andréa Nascimento, Giugliano, Loreny Gimenes
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59506/
https://www.ncbi.nlm.nih.gov/pubmed/11690544
Descripción
Sumario:BACKGROUND: Diarrhoea caused by Escherichia coli is an important cause of infant morbidity and mortality in developing countries. Enteropathogenic Escherichia coli (EPEC) is considered one of the major causes of diarrhoea in children living in developing countries. The ability of diarrhoeagenic strains of E. coli to adhere to and colonize the intestine is the first step towards developing the disease. EPEC strains adhere to enterocytes and HeLa cells in a characteristic pattern known as localized adherence. Many epidemiological studies of diarrhoea have shown that breast-feeding protects infants from intestinal infections. Both immunoglobulin and non-immunoglobulin elements of human milk are thought to contribute to the protection from diarrhoeal agents. RESULTS: The effects of human milk and its protein components on the localized adherence of EPEC were investigated. Non-immunoglobulin components of human milk responsible for the inhibition of EPEC adhesion to HeLa cells were isolated by chromatographic fractionation of human whey proteins. Besides secretory immunoglobulin A, which has been previously reported to affect the adhesion of EPEC, free secretory component (fSC) and lactoferrin (Lf) were isolated. Even in concentrations lower than those usually found in whole milk, fSC and Lf were able to inhibit the adhesion of EPEC. α-lactalbumin was also isolated, but showed no activity on EPEC adhesion. CONCLUSIONS: This study demonstrated that the immunoglobulin fraction, the free secretory component and lactoferrin of human milk inhibit EPEC adhesion to HeLa cells. These results indicate that fSC and Lf may be important non-specific defence factors against EPEC infections.