Cargando…

ZNF598 Plays Distinct Roles in Interferon-Stimulated Gene Expression and Poxvirus Protein Synthesis

Post-translational modification of ribosomal subunit proteins (RPs) is emerging as an important means of regulating gene expression. Recently, regulatory ubiquitination of small RPs RPS10 and RPS20 by the ubiquitin ligase ZNF598 was found to function in ribosome sensing and stalling on internally po...

Descripción completa

Detalles Bibliográficos
Autores principales: DiGiuseppe, Stephen, Rollins, Madeline G., Bartom, Elizabeth T., Walsh, Derek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951170/
https://www.ncbi.nlm.nih.gov/pubmed/29719242
http://dx.doi.org/10.1016/j.celrep.2018.03.132
Descripción
Sumario:Post-translational modification of ribosomal subunit proteins (RPs) is emerging as an important means of regulating gene expression. Recently, regulatory ubiquitination of small RPs RPS10 and RPS20 by the ubiquitin ligase ZNF598 was found to function in ribosome sensing and stalling on internally polyadenylated mRNAs during ribosome quality control (RQC). Here, we reveal that ZNF598 and RPS10 negatively regulate interferon-stimulated gene (ISG) expression in primary cells, depletion of which induced ISG expression and a broad antiviral state. However, cell lines lacking interferon responses revealed that ZNF598 E3 ligase activity and ubiquitination of RPS20, but not RPS10, were specifically required for poxvirus replication and synthesis of poxvirus proteins whose encoding mRNAs contain unusual 5′ poly(A) leaders. Our findings reveal distinct functions for ZNF598 and its downstream RPS targets, one that negatively regulates ISG expression and infection by a range of viruses while the other is positively exploited by poxviruses.