Cargando…
Piezoelectric Response of Multi-Walled Carbon Nanotubes
Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951522/ https://www.ncbi.nlm.nih.gov/pubmed/29690497 http://dx.doi.org/10.3390/ma11040638 |
_version_ | 1783323040916963328 |
---|---|
author | Il’ina, Marina V. Il’in, Oleg I. Blinov, Yuriy F. Konshin, Alexey A. Konoplev, Boris G. Ageev, Oleg A. |
author_facet | Il’ina, Marina V. Il’in, Oleg I. Blinov, Yuriy F. Konshin, Alexey A. Konoplev, Boris G. Ageev, Oleg A. |
author_sort | Il’ina, Marina V. |
collection | PubMed |
description | Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain. Using atomic force microscopy, we demonstrated the piezoelectric response of multi-walled CNTs under compression and bending. The current generated by deforming an individual CNT was shown to be −24 nA. The value of the surface potential at the top of the bundle of strained CNTs varied from 268 mV to −110 mV, depending on strain type and magnitude. We showed that the maximum values of the current and the surface potential can be achieved when longitudinal strain predominates in a CNT. However, increasing the bending strain of CNTs does not lead to a significant increase in current and surface potential, due to the mutual compensation of piezoelectric charges concentrated on the CNT side walls. The results of the study offer a number of opportunities and challenges for further fundamental research on the piezoelectric properties of carbon nanotubes as well as for the development of advanced CNT-based nanopiezotronic devices. |
format | Online Article Text |
id | pubmed-5951522 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59515222018-05-15 Piezoelectric Response of Multi-Walled Carbon Nanotubes Il’ina, Marina V. Il’in, Oleg I. Blinov, Yuriy F. Konshin, Alexey A. Konoplev, Boris G. Ageev, Oleg A. Materials (Basel) Article Recent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain. Using atomic force microscopy, we demonstrated the piezoelectric response of multi-walled CNTs under compression and bending. The current generated by deforming an individual CNT was shown to be −24 nA. The value of the surface potential at the top of the bundle of strained CNTs varied from 268 mV to −110 mV, depending on strain type and magnitude. We showed that the maximum values of the current and the surface potential can be achieved when longitudinal strain predominates in a CNT. However, increasing the bending strain of CNTs does not lead to a significant increase in current and surface potential, due to the mutual compensation of piezoelectric charges concentrated on the CNT side walls. The results of the study offer a number of opportunities and challenges for further fundamental research on the piezoelectric properties of carbon nanotubes as well as for the development of advanced CNT-based nanopiezotronic devices. MDPI 2018-04-21 /pmc/articles/PMC5951522/ /pubmed/29690497 http://dx.doi.org/10.3390/ma11040638 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Il’ina, Marina V. Il’in, Oleg I. Blinov, Yuriy F. Konshin, Alexey A. Konoplev, Boris G. Ageev, Oleg A. Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title | Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_full | Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_fullStr | Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_full_unstemmed | Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_short | Piezoelectric Response of Multi-Walled Carbon Nanotubes |
title_sort | piezoelectric response of multi-walled carbon nanotubes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951522/ https://www.ncbi.nlm.nih.gov/pubmed/29690497 http://dx.doi.org/10.3390/ma11040638 |
work_keys_str_mv | AT ilinamarinav piezoelectricresponseofmultiwalledcarbonnanotubes AT ilinolegi piezoelectricresponseofmultiwalledcarbonnanotubes AT blinovyuriyf piezoelectricresponseofmultiwalledcarbonnanotubes AT konshinalexeya piezoelectricresponseofmultiwalledcarbonnanotubes AT konoplevborisg piezoelectricresponseofmultiwalledcarbonnanotubes AT ageevolega piezoelectricresponseofmultiwalledcarbonnanotubes |