Cargando…

Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration

Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon...

Descripción completa

Detalles Bibliográficos
Autores principales: Jahani, Saman, Kim, Sangsik, Atkinson, Jonathan, Wirth, Justin C., Kalhor, Farid, Noman, Abdullah Al, Newman, Ward D., Shekhar, Prashant, Han, Kyunghun, Van, Vien, DeCorby, Raymond G., Chrostowski, Lukas, Qi, Minghao, Jacob, Zubin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951946/
https://www.ncbi.nlm.nih.gov/pubmed/29760394
http://dx.doi.org/10.1038/s41467-018-04276-8
_version_ 1783323103478153216
author Jahani, Saman
Kim, Sangsik
Atkinson, Jonathan
Wirth, Justin C.
Kalhor, Farid
Noman, Abdullah Al
Newman, Ward D.
Shekhar, Prashant
Han, Kyunghun
Van, Vien
DeCorby, Raymond G.
Chrostowski, Lukas
Qi, Minghao
Jacob, Zubin
author_facet Jahani, Saman
Kim, Sangsik
Atkinson, Jonathan
Wirth, Justin C.
Kalhor, Farid
Noman, Abdullah Al
Newman, Ward D.
Shekhar, Prashant
Han, Kyunghun
Van, Vien
DeCorby, Raymond G.
Chrostowski, Lukas
Qi, Minghao
Jacob, Zubin
author_sort Jahani, Saman
collection PubMed
description Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7±1.0 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration.
format Online
Article
Text
id pubmed-5951946
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59519462018-05-16 Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration Jahani, Saman Kim, Sangsik Atkinson, Jonathan Wirth, Justin C. Kalhor, Farid Noman, Abdullah Al Newman, Ward D. Shekhar, Prashant Han, Kyunghun Van, Vien DeCorby, Raymond G. Chrostowski, Lukas Qi, Minghao Jacob, Zubin Nat Commun Article Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7±1.0 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration. Nature Publishing Group UK 2018-05-14 /pmc/articles/PMC5951946/ /pubmed/29760394 http://dx.doi.org/10.1038/s41467-018-04276-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Jahani, Saman
Kim, Sangsik
Atkinson, Jonathan
Wirth, Justin C.
Kalhor, Farid
Noman, Abdullah Al
Newman, Ward D.
Shekhar, Prashant
Han, Kyunghun
Van, Vien
DeCorby, Raymond G.
Chrostowski, Lukas
Qi, Minghao
Jacob, Zubin
Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
title Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
title_full Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
title_fullStr Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
title_full_unstemmed Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
title_short Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
title_sort controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951946/
https://www.ncbi.nlm.nih.gov/pubmed/29760394
http://dx.doi.org/10.1038/s41467-018-04276-8
work_keys_str_mv AT jahanisaman controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT kimsangsik controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT atkinsonjonathan controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT wirthjustinc controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT kalhorfarid controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT nomanabdullahal controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT newmanwardd controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT shekharprashant controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT hankyunghun controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT vanvien controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT decorbyraymondg controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT chrostowskilukas controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT qiminghao controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration
AT jacobzubin controllingevanescentwavesusingsiliconphotonicalldielectricmetamaterialsfordenseintegration