Cargando…
Relationship between HOX gene and pediatric congenital clubfoot
The relationship between transcription factor homeobox gene (HOX gene) and pediatric congenital clubfoot (CCF) was studied. The CCF group comprised 35 cases of children, and the control group compised 34 cases of children without congenital malformation. The levels of inducible nitric oxide synthase...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952069/ https://www.ncbi.nlm.nih.gov/pubmed/29805506 http://dx.doi.org/10.3892/etm.2018.6013 |
Sumario: | The relationship between transcription factor homeobox gene (HOX gene) and pediatric congenital clubfoot (CCF) was studied. The CCF group comprised 35 cases of children, and the control group compised 34 cases of children without congenital malformation. The levels of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the serum of the control and CCF groups were measured using iNOS and NO kits. Interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) related to inflammation in the tissues of both groups were detected by reverse transcription-polymerase chain reaction (RT-PCR). Fatty acid synthase (Fas), Fas ligand (FasL) and Bcl-2-associated X (Bax) related to apoptosis as well as the expression of HOX mRNA, the expression of HOX in the control and CCF groups was detected by western blot analysis, and the differential expression of HOX in the control and CCF groups was statistically analyzed. Results of the kit detection showed that the expression of iNOS and NO in the CCF group were significantly higher than those in the control group, indicating that severe oxidative damage occurred in the CCF group. The results of detecting inflammatory factors and apoptosis by RT-PCR showed that the expression of IL-1β, IL-6, TNF-α, Fas, FasL and Bax mRNA in the CCF group was significantly higher than that in the control group, indicating pathogenesis of CCF was related to inflammation and apoptosis. RT-PCR and western blot analysis revealed HOX was highly expressed in the tissues of CCF, and the expression quantity was significantly stronger than that in the control group. The result of analysis of variance showed that the expression differences of HOX in normal and CCF tissues were statistically significant (P<0.01). Abnormal expression of HOX was closely related to the occurrence and development of CCF, indicating that HOX has important research value in CCF and this functional mechanism is related to oxidative damage, inflammation and apoptosis. Expression of HOX therefore shows promise as an indicator of CCF diagnosis and treatment. |
---|