Cargando…

Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst

Biomass is the sole carbon-based renewable resource for sustaining the chemical and fuel demands of our future. Lignocellulose, the primary constituent of terrestrial plants, is the most abundant non-food biomass, and its utilisation is a grand challenge in biorefineries. Here we report the first re...

Descripción completa

Detalles Bibliográficos
Autores principales: Kobayashi, Hirokazu, Kaiki, Hiroyuki, Shrotri, Abhijit, Techikawara, Kota, Fukuoka, Atsushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952881/
https://www.ncbi.nlm.nih.gov/pubmed/29896354
http://dx.doi.org/10.1039/c5sc03377b
Descripción
Sumario:Biomass is the sole carbon-based renewable resource for sustaining the chemical and fuel demands of our future. Lignocellulose, the primary constituent of terrestrial plants, is the most abundant non-food biomass, and its utilisation is a grand challenge in biorefineries. Here we report the first reusable and cost-effective heterogeneous catalyst for the depolymerisation of lignocellulose. Air oxidation of woody biomass (Eucalyptus) provides a carbonaceous material bearing an aromatic skeleton with carboxylic groups (2.1 mmol g(–1)) and aliphatic moieties. This catalyst hydrolyses woody biomass (Eucalyptus) to sugars in high yields within 1 h in trace HCl aq. Furthermore, after the reaction, the solid residue composed of the catalyst and insoluble ingredients of woody biomass is easily transformed back to fresh catalyst by the same air oxidation method. This is a self-contained system using woody biomass as both the catalyst source and substrate for realising facile catalyst preparation and recycling.