Cargando…
Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the l...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953219/ https://www.ncbi.nlm.nih.gov/pubmed/29587245 http://dx.doi.org/10.1016/j.redox.2018.03.012 |
_version_ | 1783323329126465536 |
---|---|
author | Sidlauskaite, Eva Gibson, Jack W. Megson, Ian L. Whitfield, Philip D. Tovmasyan, Artak Batinic-Haberle, Ines Murphy, Michael P. Moult, Peter R. Cobley, James N. |
author_facet | Sidlauskaite, Eva Gibson, Jack W. Megson, Ian L. Whitfield, Philip D. Tovmasyan, Artak Batinic-Haberle, Ines Murphy, Michael P. Moult, Peter R. Cobley, James N. |
author_sort | Sidlauskaite, Eva |
collection | PubMed |
description | Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP(5+) and/or MnTnBuOE-2-PyP(5+) blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS—using mitochondria-targeted Paraquat (MitoPQ)—recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP(5+). We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features. |
format | Online Article Text |
id | pubmed-5953219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-59532192018-05-16 Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning Sidlauskaite, Eva Gibson, Jack W. Megson, Ian L. Whitfield, Philip D. Tovmasyan, Artak Batinic-Haberle, Ines Murphy, Michael P. Moult, Peter R. Cobley, James N. Redox Biol Short Communication Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP(5+) and/or MnTnBuOE-2-PyP(5+) blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS—using mitochondria-targeted Paraquat (MitoPQ)—recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP(5+). We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features. Elsevier 2018-03-20 /pmc/articles/PMC5953219/ /pubmed/29587245 http://dx.doi.org/10.1016/j.redox.2018.03.012 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Short Communication Sidlauskaite, Eva Gibson, Jack W. Megson, Ian L. Whitfield, Philip D. Tovmasyan, Artak Batinic-Haberle, Ines Murphy, Michael P. Moult, Peter R. Cobley, James N. Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning |
title | Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning |
title_full | Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning |
title_fullStr | Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning |
title_full_unstemmed | Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning |
title_short | Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning |
title_sort | mitochondrial ros cause motor deficits induced by synaptic inactivity: implications for synapse pruning |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953219/ https://www.ncbi.nlm.nih.gov/pubmed/29587245 http://dx.doi.org/10.1016/j.redox.2018.03.012 |
work_keys_str_mv | AT sidlauskaiteeva mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT gibsonjackw mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT megsonianl mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT whitfieldphilipd mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT tovmasyanartak mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT batinichaberleines mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT murphymichaelp mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT moultpeterr mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning AT cobleyjamesn mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning |