Cargando…

Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning

Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the l...

Descripción completa

Detalles Bibliográficos
Autores principales: Sidlauskaite, Eva, Gibson, Jack W., Megson, Ian L., Whitfield, Philip D., Tovmasyan, Artak, Batinic-Haberle, Ines, Murphy, Michael P., Moult, Peter R., Cobley, James N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953219/
https://www.ncbi.nlm.nih.gov/pubmed/29587245
http://dx.doi.org/10.1016/j.redox.2018.03.012
_version_ 1783323329126465536
author Sidlauskaite, Eva
Gibson, Jack W.
Megson, Ian L.
Whitfield, Philip D.
Tovmasyan, Artak
Batinic-Haberle, Ines
Murphy, Michael P.
Moult, Peter R.
Cobley, James N.
author_facet Sidlauskaite, Eva
Gibson, Jack W.
Megson, Ian L.
Whitfield, Philip D.
Tovmasyan, Artak
Batinic-Haberle, Ines
Murphy, Michael P.
Moult, Peter R.
Cobley, James N.
author_sort Sidlauskaite, Eva
collection PubMed
description Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP(5+) and/or MnTnBuOE-2-PyP(5+) blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS—using mitochondria-targeted Paraquat (MitoPQ)—recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP(5+). We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.
format Online
Article
Text
id pubmed-5953219
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-59532192018-05-16 Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning Sidlauskaite, Eva Gibson, Jack W. Megson, Ian L. Whitfield, Philip D. Tovmasyan, Artak Batinic-Haberle, Ines Murphy, Michael P. Moult, Peter R. Cobley, James N. Redox Biol Short Communication Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP(5+) and/or MnTnBuOE-2-PyP(5+) blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS—using mitochondria-targeted Paraquat (MitoPQ)—recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP(5+). We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features. Elsevier 2018-03-20 /pmc/articles/PMC5953219/ /pubmed/29587245 http://dx.doi.org/10.1016/j.redox.2018.03.012 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Short Communication
Sidlauskaite, Eva
Gibson, Jack W.
Megson, Ian L.
Whitfield, Philip D.
Tovmasyan, Artak
Batinic-Haberle, Ines
Murphy, Michael P.
Moult, Peter R.
Cobley, James N.
Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
title Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
title_full Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
title_fullStr Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
title_full_unstemmed Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
title_short Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning
title_sort mitochondrial ros cause motor deficits induced by synaptic inactivity: implications for synapse pruning
topic Short Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953219/
https://www.ncbi.nlm.nih.gov/pubmed/29587245
http://dx.doi.org/10.1016/j.redox.2018.03.012
work_keys_str_mv AT sidlauskaiteeva mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT gibsonjackw mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT megsonianl mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT whitfieldphilipd mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT tovmasyanartak mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT batinichaberleines mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT murphymichaelp mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT moultpeterr mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning
AT cobleyjamesn mitochondrialroscausemotordeficitsinducedbysynapticinactivityimplicationsforsynapsepruning