Cargando…
Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys
One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ...
Autores principales: | Tang, Shiming, Zhang, Yimeng, Li, Zhihao, Li, Ming, Liu, Fang, Jiang, Hongfei, Lee, Tai Sing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953536/ https://www.ncbi.nlm.nih.gov/pubmed/29697371 http://dx.doi.org/10.7554/eLife.33370 |
Ejemplares similares
-
Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons
por: Wu, Ziniu, et al.
Publicado: (2021) -
Coding strategy for surface luminance switches in the primary visual cortex of the awake monkey
por: Yang, Yi, et al.
Publicado: (2022) -
Remote sensing image super-resolution using multi-scale convolutional sparse coding network
por: Cheng, Ruihong, et al.
Publicado: (2022) -
Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse
por: De Franceschi, Gioia, et al.
Publicado: (2018) -
Joint bayesian convolutional sparse coding for image super-resolution
por: Ge, Qi, et al.
Publicado: (2018)