Cargando…
Ambipolar ferromagnetism by electrostatic doping of a manganite
Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953920/ https://www.ncbi.nlm.nih.gov/pubmed/29765044 http://dx.doi.org/10.1038/s41467-018-04233-5 |
_version_ | 1783323415366598656 |
---|---|
author | Zheng, L. M. Wang, X. Renshaw Lü, W. M. Li, C. J. Paudel, T. R. Liu, Z. Q. Huang, Z. Zeng, S. W. Han, Kun Chen, Z. H. Qiu, X. P. Li, M. S. Yang, Shize Yang, B. Chisholm, Matthew F. Martin, L. W. Pennycook, S. J. Tsymbal, E. Y. Coey, J. M. D. Cao, W. W. |
author_facet | Zheng, L. M. Wang, X. Renshaw Lü, W. M. Li, C. J. Paudel, T. R. Liu, Z. Q. Huang, Z. Zeng, S. W. Han, Kun Chen, Z. H. Qiu, X. P. Li, M. S. Yang, Shize Yang, B. Chisholm, Matthew F. Martin, L. W. Pennycook, S. J. Tsymbal, E. Y. Coey, J. M. D. Cao, W. W. |
author_sort | Zheng, L. M. |
collection | PubMed |
description | Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO(3), with electron–hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO(3) film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron–hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems. |
format | Online Article Text |
id | pubmed-5953920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59539202018-05-17 Ambipolar ferromagnetism by electrostatic doping of a manganite Zheng, L. M. Wang, X. Renshaw Lü, W. M. Li, C. J. Paudel, T. R. Liu, Z. Q. Huang, Z. Zeng, S. W. Han, Kun Chen, Z. H. Qiu, X. P. Li, M. S. Yang, Shize Yang, B. Chisholm, Matthew F. Martin, L. W. Pennycook, S. J. Tsymbal, E. Y. Coey, J. M. D. Cao, W. W. Nat Commun Article Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO(3), with electron–hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO(3) film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron–hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems. Nature Publishing Group UK 2018-05-15 /pmc/articles/PMC5953920/ /pubmed/29765044 http://dx.doi.org/10.1038/s41467-018-04233-5 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zheng, L. M. Wang, X. Renshaw Lü, W. M. Li, C. J. Paudel, T. R. Liu, Z. Q. Huang, Z. Zeng, S. W. Han, Kun Chen, Z. H. Qiu, X. P. Li, M. S. Yang, Shize Yang, B. Chisholm, Matthew F. Martin, L. W. Pennycook, S. J. Tsymbal, E. Y. Coey, J. M. D. Cao, W. W. Ambipolar ferromagnetism by electrostatic doping of a manganite |
title | Ambipolar ferromagnetism by electrostatic doping of a manganite |
title_full | Ambipolar ferromagnetism by electrostatic doping of a manganite |
title_fullStr | Ambipolar ferromagnetism by electrostatic doping of a manganite |
title_full_unstemmed | Ambipolar ferromagnetism by electrostatic doping of a manganite |
title_short | Ambipolar ferromagnetism by electrostatic doping of a manganite |
title_sort | ambipolar ferromagnetism by electrostatic doping of a manganite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953920/ https://www.ncbi.nlm.nih.gov/pubmed/29765044 http://dx.doi.org/10.1038/s41467-018-04233-5 |
work_keys_str_mv | AT zhenglm ambipolarferromagnetismbyelectrostaticdopingofamanganite AT wangxrenshaw ambipolarferromagnetismbyelectrostaticdopingofamanganite AT luwm ambipolarferromagnetismbyelectrostaticdopingofamanganite AT licj ambipolarferromagnetismbyelectrostaticdopingofamanganite AT paudeltr ambipolarferromagnetismbyelectrostaticdopingofamanganite AT liuzq ambipolarferromagnetismbyelectrostaticdopingofamanganite AT huangz ambipolarferromagnetismbyelectrostaticdopingofamanganite AT zengsw ambipolarferromagnetismbyelectrostaticdopingofamanganite AT hankun ambipolarferromagnetismbyelectrostaticdopingofamanganite AT chenzh ambipolarferromagnetismbyelectrostaticdopingofamanganite AT qiuxp ambipolarferromagnetismbyelectrostaticdopingofamanganite AT lims ambipolarferromagnetismbyelectrostaticdopingofamanganite AT yangshize ambipolarferromagnetismbyelectrostaticdopingofamanganite AT yangb ambipolarferromagnetismbyelectrostaticdopingofamanganite AT chisholmmatthewf ambipolarferromagnetismbyelectrostaticdopingofamanganite AT martinlw ambipolarferromagnetismbyelectrostaticdopingofamanganite AT pennycooksj ambipolarferromagnetismbyelectrostaticdopingofamanganite AT tsymbaley ambipolarferromagnetismbyelectrostaticdopingofamanganite AT coeyjmd ambipolarferromagnetismbyelectrostaticdopingofamanganite AT caoww ambipolarferromagnetismbyelectrostaticdopingofamanganite |