Cargando…

Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics

The dynamics of liquid water feature a variety of time scales, ranging from extremely fast ballistic-like thermal motion, to slower molecular diffusion and hydrogen-bond rearrangements. Here, we utilize coherent X-ray pulses to investigate the sub-100 fs equilibrium dynamics of water from ambient co...

Descripción completa

Detalles Bibliográficos
Autores principales: Perakis, Fivos, Camisasca, Gaia, Lane, Thomas J., Späh, Alexander, Wikfeldt, Kjartan Thor, Sellberg, Jonas A., Lehmkühler, Felix, Pathak, Harshad, Kim, Kyung Hwan, Amann-Winkel, Katrin, Schreck, Simon, Song, Sanghoon, Sato, Takahiro, Sikorski, Marcin, Eilert, Andre, McQueen, Trevor, Ogasawara, Hirohito, Nordlund, Dennis, Roseker, Wojciech, Koralek, Jake, Nelson, Silke, Hart, Philip, Alonso-Mori, Roberto, Feng, Yiping, Zhu, Diling, Robert, Aymeric, Grübel, Gerhard, Pettersson, Lars G. M., Nilsson, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953967/
https://www.ncbi.nlm.nih.gov/pubmed/29765052
http://dx.doi.org/10.1038/s41467-018-04330-5
Descripción
Sumario:The dynamics of liquid water feature a variety of time scales, ranging from extremely fast ballistic-like thermal motion, to slower molecular diffusion and hydrogen-bond rearrangements. Here, we utilize coherent X-ray pulses to investigate the sub-100 fs equilibrium dynamics of water from ambient conditions down to supercooled temperatures. This novel approach utilizes the inherent capability of X-ray speckle visibility spectroscopy to measure equilibrium intermolecular dynamics with lengthscale selectivity, by measuring oxygen motion in momentum space. The observed decay of the speckle contrast at the first diffraction peak, which reflects tetrahedral coordination, is attributed to motion on a molecular scale within the first 120 fs. Through comparison with molecular dynamics simulations, we conclude that the slowing down upon cooling from 328 K down to 253 K is not due to simple thermal ballistic-like motion, but that cage effects play an important role even on timescales over 25 fs due to hydrogen-bonding.