Cargando…
Pre-dosing with lilotomab prior to therapy with (177)Lu-lilotomab satetraxetan significantly increases the ratio of tumor to red marrow absorbed dose in non-Hodgkin lymphoma patients
PURPOSE: (177)Lu-lilotomab satetraxetan is a novel anti-CD37 antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma (NHL). Four arms with different combinations of pre-dosing and pre-treatment have been investigated in a first-in-human phase 1/2a study for relapsed CD37+ indolent...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953993/ https://www.ncbi.nlm.nih.gov/pubmed/29470615 http://dx.doi.org/10.1007/s00259-018-3964-9 |
Sumario: | PURPOSE: (177)Lu-lilotomab satetraxetan is a novel anti-CD37 antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma (NHL). Four arms with different combinations of pre-dosing and pre-treatment have been investigated in a first-in-human phase 1/2a study for relapsed CD37+ indolent NHL. The aim of this work was to determine the tumor and normal tissue absorbed doses for all four arms, and investigate possible variations in the ratios of tumor to organs-at-risk absorbed doses. METHODS: Two of the phase 1 arms included cold lilotomab pre-dosing (arm 1 and 4; 40 mg fixed and 100 mg/m(2) BSA dosage, respectively) and two did not (arms 2 and 3). All patients were pre-treated with different regimens of rituximab. The patients received either 10, 15, or 20 MBq (177)Lu-lilotomab satetraxetan per kg body weight. Nineteen patients were included for dosimetry, and a total of 47 lesions were included. The absorbed doses were calculated from multiple SPECT/CT-images and normalized by administered activity for each patient. Two-sided Student’s t tests were used for all statistical analyses. RESULTS: Organs with distinct uptake of (177)Lu-lilotomab satetraxetan, in addition to tumors, were red marrow (RM), liver, spleen, and kidneys. The mean RM absorbed doses were 0.94, 1.55, 1.44, and 0.89 mGy/MBq for arms 1–4, respectively. For the patients not pre-dosed with lilotomab (arms 2 and 3 combined) the mean RM absorbed dose was 1.48 mGy/MBq, which was significantly higher than for both arm 1 (p = 0.04) and arm 4 (p = 0.02). Of the other organs, the highest uptake was found in the spleen, and there was a significantly lower spleen absorbed dose for arm-4 patients than for the patient group without lilotomab pre-dosing (1.13 vs. 3.20 mGy/MBq; p < 0.01). Mean tumor absorbed doses were 2.15, 2.31, 1.33, and 2.67 mGy/MBq for arms 1–4, respectively. After averaging the tumor absorbed dose for each patient, the patient mean tumor absorbed dose to RM absorbed dose ratios were obtained, given mean values of 1.07 for the patient group not pre-dosed with lilotomab, of 2.16 for arm 1, and of 4.62 for arm 4. The ratios were significantly higher in both arms 1 and 4 compared to the group without pre-dosing (p = 0.05 and p = 0.02). No statistically significant difference between arms 1 and 4 was found. CONCLUSIONS: RM is the primary dose-limiting organ for (177)Lu-lilotomab satetraxetan treatment, and pre-dosing with lilotomab has a mitigating effect on RM absorbed dose. Increasing the amount of lilotomab from 40 mg to 100 mg/m(2) was found to slightly decrease the RM absorbed dose and increase the ratio of tumor to RM absorbed dose. Still, both pre-dosing amounts resulted in significantly higher tumor to RM absorbed dose ratios. The findings encourage continued use of pre-dosing with lilotomab. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00259-018-3964-9) contains supplementary material, which is available to authorized users. |
---|