Cargando…

A frequency domain approach for parameter identification in multibody dynamics

The adjoint method shows an efficient way to incorporate inverse dynamics to engineering multibody applications, as, e.g., parameter identification. In case of the identification of parameters in oscillating multibody systems, a combination of Fourier analysis and the adjoint method is an obvious an...

Descripción completa

Detalles Bibliográficos
Autores principales: Oberpeilsteiner, Stefan, Lauss, Thomas, Steiner, Wolfgang, Nachbagauer, Karin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954016/
https://www.ncbi.nlm.nih.gov/pubmed/29780274
http://dx.doi.org/10.1007/s11044-017-9596-1
_version_ 1783323435384963072
author Oberpeilsteiner, Stefan
Lauss, Thomas
Steiner, Wolfgang
Nachbagauer, Karin
author_facet Oberpeilsteiner, Stefan
Lauss, Thomas
Steiner, Wolfgang
Nachbagauer, Karin
author_sort Oberpeilsteiner, Stefan
collection PubMed
description The adjoint method shows an efficient way to incorporate inverse dynamics to engineering multibody applications, as, e.g., parameter identification. In case of the identification of parameters in oscillating multibody systems, a combination of Fourier analysis and the adjoint method is an obvious and promising approach. The present paper shows the adjoint method including adjoint Fourier coefficients for the parameter identification of the amplitude response of oscillations. Two examples show the potential and efficiency of the proposed method in multibody dynamics.
format Online
Article
Text
id pubmed-5954016
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-59540162018-05-18 A frequency domain approach for parameter identification in multibody dynamics Oberpeilsteiner, Stefan Lauss, Thomas Steiner, Wolfgang Nachbagauer, Karin Multibody Syst Dyn Article The adjoint method shows an efficient way to incorporate inverse dynamics to engineering multibody applications, as, e.g., parameter identification. In case of the identification of parameters in oscillating multibody systems, a combination of Fourier analysis and the adjoint method is an obvious and promising approach. The present paper shows the adjoint method including adjoint Fourier coefficients for the parameter identification of the amplitude response of oscillations. Two examples show the potential and efficiency of the proposed method in multibody dynamics. Springer Netherlands 2017-11-03 2018 /pmc/articles/PMC5954016/ /pubmed/29780274 http://dx.doi.org/10.1007/s11044-017-9596-1 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Oberpeilsteiner, Stefan
Lauss, Thomas
Steiner, Wolfgang
Nachbagauer, Karin
A frequency domain approach for parameter identification in multibody dynamics
title A frequency domain approach for parameter identification in multibody dynamics
title_full A frequency domain approach for parameter identification in multibody dynamics
title_fullStr A frequency domain approach for parameter identification in multibody dynamics
title_full_unstemmed A frequency domain approach for parameter identification in multibody dynamics
title_short A frequency domain approach for parameter identification in multibody dynamics
title_sort frequency domain approach for parameter identification in multibody dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954016/
https://www.ncbi.nlm.nih.gov/pubmed/29780274
http://dx.doi.org/10.1007/s11044-017-9596-1
work_keys_str_mv AT oberpeilsteinerstefan afrequencydomainapproachforparameteridentificationinmultibodydynamics
AT laussthomas afrequencydomainapproachforparameteridentificationinmultibodydynamics
AT steinerwolfgang afrequencydomainapproachforparameteridentificationinmultibodydynamics
AT nachbagauerkarin afrequencydomainapproachforparameteridentificationinmultibodydynamics
AT oberpeilsteinerstefan frequencydomainapproachforparameteridentificationinmultibodydynamics
AT laussthomas frequencydomainapproachforparameteridentificationinmultibodydynamics
AT steinerwolfgang frequencydomainapproachforparameteridentificationinmultibodydynamics
AT nachbagauerkarin frequencydomainapproachforparameteridentificationinmultibodydynamics