Cargando…
How Big Data, Comparative Effectiveness Research, and Rapid-Learning Health-Care Systems Can Transform Patient Care in Radiation Oncology
Big data and comparative effectiveness research methodologies can be applied within the framework of a rapid-learning health-care system (RLHCS) to accelerate discovery and to help turn the dream of fully personalized medicine into a reality. We synthesize recent advances in genomics with trends in...
Autores principales: | Sanders, Jason C., Showalter, Timothy N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954037/ https://www.ncbi.nlm.nih.gov/pubmed/29868477 http://dx.doi.org/10.3389/fonc.2018.00155 |
Ejemplares similares
-
Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery
por: Trifiletti, Daniel M., et al.
Publicado: (2015) -
Editorial: Machine Learning With Radiation Oncology Big Data
por: Deng, Jun, et al.
Publicado: (2018) -
MRI-LINAC: A transformative technology in radiation oncology
por: Ng, John, et al.
Publicado: (2023) -
Radiation Oncology: Today and Tomorrow
por: Kinsella, Timothy James
Publicado: (2011) -
Para-Aortic Nodal Radiation in the Definitive Management of Node-Positive Cervical Cancer
por: Sanders, Jason C., et al.
Publicado: (2021)